Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Maki Mateso, Jean-Claude; Bielders, Charles L.; Monsieurs, Eliseet al.
2023 • In Natural Hazards and Earth System Sciences, 23 (2), p. 643 - 666
Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Tropical mountainous regions are often identified as landslide hotspots with growing population pressure. Anthropogenic factors are assumed to play a role in the occurrence of landslides in these densely populated regions, yet the relative importance of these human-induced factors remains poorly documented. In this work, we aim to explore the impact of forest cover dynamics, roads and mining activities on the characteristics and causes of landslides in the rift flank west of Lake Kivu in the Democratic Republic of the Congo (DR Congo). To do so, we compile a comprehensive multi-temporal inventory of 2730 landslides. The landslides are of different types and are grouped into five categories that are adapted to study the impact of human activities on slope stability: old (pre-1950s) and recent (post-1950s) deep-seated landslides, shallow landslides, landslides associated with mining and landslides associated with road construction. We analyse the landslides according to this classification protocol via frequency-area statistics, frequency ratio distribution and logistic regression susceptibility assessment. We find that natural factors contributing to the cause of recent and old deep-seated landslides were either different or changed over time. Under similar topographic conditions, shallow landslides are more frequent, but of a smaller size, in areas where deforestation has occurred since the 1950s. We attribute this size reduction to the decrease in regolith cohesion due to forest loss, which allows for a smaller minimum critical area for landsliding. In areas that were already deforested in the 1950s, shallow landslides are less frequent, larger and occur on less steep slopes. This suggests a combined role between regolith availability and soil management practices that influence erosion and water infiltration. Mining activities increase the odds of landsliding. Landslides associated with mining and roads are larger than shallow landslides but smaller than the recent deep-seated instabilities, and they are controlled by environmental factors that are not present under natural conditions. Our analysis demonstrates the role of human activities on the occurrence of landslides in the Lake Kivu region. Overall, it highlights the need to consider this context when studying hillslope instability characteristics and distribution patterns in regions under anthropogenic pressure. Our work also highlights the importance of using landslide classification criteria adapted to the context of the Anthropocene.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Maki Mateso, Jean-Claude ; Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic Congo ; Environmental Sciences Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
Bielders, Charles L.; Environmental Sciences Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
Monsieurs, Elise ; Université de Liège - ULiège ; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; F.R.S.-FNRS, Brussels, Belgium
Depicker, Arthur ; Department of Earth and Environmental Sciences, Ku Leuven, Leuven, Belgium
Smets, Benoît ; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Tambala, Théophile; Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic Congo
Bagalwa Mateso, Luc; Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic Congo
Dewitte, Olivier ; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Language :
English
Title :
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso was supported by the Université catholique de Louvain (International Action Committee (CAI) doctoral scholarship from the International Relations Office) and the development cooperation programme of the Royal Museum for Central Africa with support of the Directorate-General for Development Cooperation and Humanitarian Aid of Belgium (RMCA–DGD). Arthur Depicker and Benoît Smets were supported by the PAStECA project (Historical Aerial Photographs and Archives to Assess Environmental Changes in Central Africa; BELSPO BRAIN-be programme, contract no. BR/165/A3/PASTECA; http://pasteca.africamuseum.be/ , last access: 2 February 2023). Elise Monsieurs was supported by an F.R.S.–FNRS PhD scholarship. We wish to thank Bruno Delvaux, Jean Poesen and Veerle Vanacker for their insightful discussions and recommendations regarding this research. A special thank goes to François Kervyn for his constant support in conducting research in the region.The fieldwork was supported by the GeoRisCA (Geo-Risk in Central Africa; BELSPO SSD programme, contract no. SD/RI/02A; http://georiska.africamuseum.be/ , last access: 2 Febuary 2023), RESIST (Remote Sensing and In Situ Detection and Tracking of Geohazards; BELSPO STEREO III programme, contract no. SR/00/305; http://resist.africamuseum.be/ , last access: 2 Febuary 2023) and HARISSA (Natural HAzards, RISks and Society in Africa: developing knowledge and capacities; RMCA–DGD 2019–2024; https://georiska.africamuseum.be/en/activities/harissa , last access: 2 February 2023) projects. This research has been supported by the Université catholique de Louvain (International Action Committee (CAI) doctoral scholarship from the International Relations Office).
Albino, F., Smets, B., D'Oreye, N., and Kervyn, F.: Highresolution TanDEM-X DEM: An accurate method to estimate lava flow volumes at Nyamulagira Volcano (D. R. Congo), J. Geophys. Res.-Solid Earth, 120, 4189-4207, https://doi.org/10.1002/2015JB011988, 2015.
Aleman, J. C., Jarzyna, M. A., and Staver, A. C.: Forest extent and deforestation in tropical Africa since 1900, Nat. Ecol. Evol., 2, 26-33, https://doi.org/10.1038/s41559-017-0406-1, 2018.
Arca, D., Kutoglu, H. S., and Becek, K.: Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method, Environ. Monit. Assess., 190, 725, https://doi.org/10.1007/s10661-018-7085-5, 2018.
Bashwira, M.-R., Cuvelier, J., Hilhorst, D., and van der Haar, G.: Not only a man's world: Women's involvement in artisanal mining in eastern DRC, Resour. Policy, 40, 109-116, https://doi.org/10.1016/j.resourpol.2013.11.002, 2014.
Basnet, B. and Vodacek, A.: Tracking Land Use/Land Cover Dynamics in Cloud Prone Areas Using Moderate Resolution Satellite Data: A Case Study in Central Africa, Remote Sens., 7, 6683-6709, https://doi.org/10.3390/rs70606683, 2015.
Bennett, G. L., Miller, S. R., Roering, J. J., and Schmidt, D. A.: Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction, Geology, 44, 363-366, https://doi.org/10.1130/G37530.1, 2016.
Brenning, A.: Improved spatial analysis and prediction of landslide susceptibility: Practical recommendations, in: Landslides and Engineered Slopes: Protecting Society Through Improved Understanding, Chapter Improved Spatial Analysis and Prediction of Landslide Susceptibility: Practical Recommendations, Taylor & Francis, Alberta, edited by: Eberhardt, E., Froese, C., Turner, A. K.,and Leroueil, S., ISBN 978-041562123-6, 789-794, 2012.
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45-57, https://doi.org/10.5194/nhess-15-45-2015, 2015.
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A databased landslide susceptibility map of Africa, Earth-Sci. Rev., 185, 102-121, https://doi.org/10.1016/j.earscirev.2018.05.002, 2018.
Butsic, V., Baumann, M., Shortland, A., Walker, S., and Kuemmerle, T.: Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation, Biol. Conserv., 191, 266-273, https://doi.org/10.1016/j.biocon.2015.06.037, 2015.
Chen, L., Guo, Z., Yin, K., Shrestha, D. P., and Jin, S.: The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China), Nat. Hazards Earth Syst. Sci., 19, 2207-2228, https://doi.org/10.5194/nhess-19-2207-2019, 2019.
Cirimwami, L., Doumenge, C., Kahindo, J.-M., and Amani, C.: The effect of elevation on species richness in tropical forests depends on the considered lifeform: results from an East African mountain forest, Trop. Ecol., 60, 473-484, https://doi.org/10.1007/s42965-019-00050-z, 2019.
DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M.: Deforestation driven by urban population growth and agricultural trade in the twenty-first century, Nat. Geosci., 3, 178-181, https://doi.org/10.1038/ngeo756, 2010.
Delvaux, D., Mulumba, J.-L., Sebagenzi, M. N. S., Bondo, S. F., Kervyn, F., and Havenith, H.-B.: Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system), J. African Earth Sci., 134, 831-855, https://doi.org/10.1016/j.jafrearsci.2016.10.004, 2017.
Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.-B., Maki Mateso, J.-C., Govers, G., and Dewitte, O.: The added value of a regional landslide susceptibility assessment: The western branch of the East African Rift, Geomorphology, 353, 106886, https://doi.org/10.1016/j.geomorph.2019.106886, 2020.
Depicker, A., Jacobs, L., Mboga, N., Smets, B., Van Rompaey, A., Lennert, M., Wolff, E., Kervyn, F., Michellier, C., Dewitte, O., and Govers, G.: Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift, Nat. Sustain., 4, 965-974, https://doi.org/10.1038/s41893-021-00757-9, 2021a.
Depicker, A., Govers, G., Jacobs, L., Campforts, B., Uwihirwe, J., and Dewitte, O.: Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika-Kivu rift region, Africa, Earth Surf. Dynam., 9, 445-462, https://doi.org/10.5194/esurf-9-445-2021, 2021b.
Dewitte, O., Dille, A., Depicker, A., Kubwimana, D., Maki Mateso, J.-C., Mugaruka Bibentyo, T., Uwihirwe, J., and Monsieurs, E.: Constraining landslide timing in a data-scarce context: from recent to very old processes in the tropical environment of the North Tanganyika-Kivu Rift region, Landslides, 18, 161-177, https://doi.org/10.1007/s10346-020-01452-0, 2021.
Dewitte, O., Depicker, A., Moeyersons, J., and Dille, A.: Mass Movements in Tropical Climates, in: Treatise on Geomorphology, vol. 5, edited by: Shroder, J. J. F., Elsevier, 338-349, https://doi.org/10.1016/B978-0-12-818234-5.00118-8, 2022.
Dille, A., Kervyn, F., Mugaruka Bibentyo, T., Delvaux, D., Ganza, G. B., Ilombe Mawe, G., Kalikone Buzera, C., Safari Nakito, E., Moeyersons, J., Monsieurs, E., Nzolang, C., Smets, B., Kervyn, M., and Dewitte, O.: Causes and triggers of deep-seated hillslope instability in the tropics-Insights from a 60-year record of Ikoma landslide (DR Congo), Geomorphology, 345, 106835, https://doi.org/10.1016/j.geomorph.2019.106835, 2019.
Drake, T. W., Van Oost, K., Barthel, M., Bauters, M., Hoyt, A. M., Podgorski, D. C., Six, J., Boeckx, P., Trumbore, S. E., Cizungu Ntaboba, L., and Spencer, R. G. M.: Mobilization of aged and biolabile soil carbon by tropical deforestation, Nat. Geosci., 12, 541-546, https://doi.org/10.1038/s41561-019-0384-9, 2019.
Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, Nat. Hazards Earth Syst. Sci., 20, 3413-3424, https://doi.org/10.5194/nhess-20-3413-2020, 2020.
ESA: ESA Climate Change Initiative-Africa Land Cover Project 2017, 20m Resolution, Eur. Sp. Agency [data set], https://2016africalandcover20m.esrin.esa.int/ (lass access: 2 March 2020). , 2016.
Fang, Z., Wang, Y., Peng, L., and Hong, H.: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping, Comput. Geosci., 139, 104470, https://doi.org/10.1016/j.cageo.2020.104470, 2020.
Felton, A. A., Russell, J. M., Cohen, A. S., Baker, M. E., Chesley, J. T., Lezzar, K. E., McGlue, M. M., Pigati, J. S., Quade, J., Curt Stager, J., and Tiercelin, J. J.: Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 405-423, https://doi.org/10.1016/j.palaeo.2007.04.003, 2007.
Fisher, G. B., Amos, C. B., Bookhagen, B., Burbank, D. W., and Godard, V.: Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes, in: Google Earth and Virtual Visualizations in Geoscience Education and Research, vol. 492, Geological Society of America, 1-22, https://doi.org/10.1130/2012.2492(01), 2012.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161-2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Geenen, S.: A dangerous bet: The challenges of formalizing artisanal mining in the Democratic Republic of Congo, Resour. Pol., 37, 322-330, https://doi.org/10.1016/j.resourpol.2012.02.004, 2012.
Glade, T.: Landslide occurrence as a response to land use change: a review of evidence from New Zealand, Catena, 51, 297-314, https://doi.org/10.1016/S0341-8162(02)00170-4, 2003.
Grima, N., Edwards, D., Edwards, F., Petley, D., and Fisher, B.: Landslides in the Andes: Forests can provide cost-effective landslide regulation services, Sci. Total Environ., 745, 141128, https://doi.org/10.1016/j.scitotenv.2020.141128, 2020.
Guns, M. and Vanacker, V.: Shifts in landslide frequency-area distribution after forest conversion in the tropical Andes, Anthropocene, 6, 75-85, https://doi.org/10.1016/j.ancene.2014.08.001, 2014.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.: Landslide inventory maps: New tools for an old problem, Earth-Sci. Rev., 112, 42-66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Haberyan, K. A. and Hecky, R. E.: The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika, Palaeogeogr. Palaeoclimatol. Palaeoecol., 61, 169-197, https://doi.org/10.1016/0031-0182(87)90048-4, 1987.
Heri-Kazi, A. B. and Bielders, C. L.: "Cropland characteristics and extent of soil loss by rill and gully erosion in smallholder farms in the KIVU highlands, D.R. Congo," Geoderma Reg., 26, e00404, https://doi.org/10.1016/j.geodrs.2021.e00404, 2021a.
Heri-Kazi, A. B. and Bielders, C. L.: Erosion and soil and water conservation in South-Kivu (eastern DR Congo): The farmers' view, L. Degrad. Dev., 32, 699-713, https://doi.org/10.1002/ldr.3755, 2021b.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, 2nd Edn., John Wiley and Sons, New York, 375 pp., https:// onlinelibrary.wiley.com/doi/book/10.1002/0471722146 (last access: 2 Febuary 2023), 2000.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167-194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Imani, G., Boyemba, F., Lewis, S., Nabahungu, N. L., Calders, K., Zapfack, L., Riera, B., Balegamire, C., and Cuni-Sanchez, A.: Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa, PLoS One, 12, e0179653, https://doi.org/10.1371/journal.pone.0179653, 2017.
Jacobs, L., Dewitte, O., Poesen, J., Maes, J., Mertens, K., Sekajugo, J., and Kervyn, M.: Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda, J. African Earth Sci., 134, 917-930, https://doi.org/10.1016/j.jafrearsci.2016.05.013, 2017.
Jacobs, L., Dewitte, O., Poesen, J., Sekajugo, J., Nobile, A., Rossi, M., Thiery, W., and Kervyn, M.: Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains, Nat. Hazards Earth Syst. Sci., 18, 105-124, https://doi.org/10.5194/nhess-18-105-2018, 2018.
Jaillon, A.: Maps of conflict minerals in eastern DRC-A0 posters (International Peace Information Service, access: 25 September 2020) https://ipisresearch.be/publication/ map-conflict-minerals-eastern-drc-a0-posters/ (last access: 2 Febuary 2023), 2020.
Jones, J. N., Boulton, S. J., Bennett, G. L., Stokes, M., and Whitworth, M. R. Z.: Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling, J. Geophys. Res.-Earth Surf., 126, 1-26, https://doi.org/10.1029/2021JF006067, 2021.
Kampunzu, A. B., Bonhomme, M. G., and Kanika, M.: Geochronology of volcanic rocks and evolution of the Cenozoic western branch of the East African Rift system, J. African Earth Sci., 26, 441-461, https://doi.org/10.1016/S0899-5362(98)00025-6, 1998.
Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95, 406-421, https://doi.org/https://doi.org/10.1130/0016-7606(1984)95, 1984.
Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., and Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of a global and regional modeling approach, Environ. Earth Sci., 66, 1683-1696, https://doi.org/10.1007/s12665-011-0990-3, 2012.
Kleinbaum, D. G. and Klein, M.: Logistic Regression, edited by: Intergovernmental Panel on Climate Change, Springer New York, New York, NY, 167-73 pp., https://doi.org/10.1007/978-1-4419-1742-3, 2010.
Kubwimana, D., Ait Brahim, L., Nkurunziza, P., Dille, A., Depicker, A., Nahimana, L., Abdelouafi, A., and Dewitte, O.: Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi, Geosciences, 11, 259, https://doi.org/10.3390/geosciences11060259, 2021.
Laghmouch, M., Kalikone, C. B., Ganza, G. B., Delvaux, D., Bachinyaga, J., Wazi, N., Nzolang, C., Fernandez, M., Nim pagaritse, G., Tack, L., Dewaele, S., and Kervyn, F.: Carte géologique du Kivu au 1/500 000, ISBN 9789492669438, 2018.
LaHusen, S. R., Duvall, A. R., Booth, A. M., Grant, A., Mishkin, B. A., Montgomery, D. R., Struble, W., Roering, J. J., and Wartman, J.: Rainfall triggers more deep-seated landslides than Cascadia earthquakes in the Oregon Coast Range, USA, Sci. Adv., 6, eaba6790, https://doi.org/10.1126/sciadv.aba6790, 2020.
Lee, S. and Pradhan, B.: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models, Landslides, 4, 33-41, https://doi.org/10.1007/s10346-006-0047-y, 2007.
Lee, S., Ryu, J.-H., and Kim, I.-S.: Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea, Landslides, 4, 327-338, https://doi.org/10.1007/s10346-007-0088-x, 2007.
Linard, C., Gilbert, M., Snow, R. W., Noor, A. M., and Tatem, A. J.: Population Distribution, Settlement Patterns and Accessibility across Africa in 2010, PLoS One, 7, e31743, https://doi.org/10.1371/journal.pone.0031743, 2012.
Maki Mateso, J.-C. and Dewitte, O.: Towards an inventory of landslide processes and the elements at risk on the Rift flanks West of Lake Kivu (DRC), Geo. Eco. Trop., 38, 137-154, 2014.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Process. Landf., 29, 687-711, https://doi.org/10.1002/esp.1064, 2004.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723-733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides, Earth Surf. Dynam., 7, 107-128, https://doi.org/10.5194/esurf-7-107-2019, 2019.
Masi, E. B., Segoni, S., and Tofani, V.: Root Reinforcement in Slope Stability Models: A Review, Geosciences, 11, 212, https://doi.org/10.3390/geosciences11050212, 2021.
Masumbuko, N. C., Habiyaremye, M. F., and Lejoly, J.: Woody climbing plants influence the structure of the mountain forest in the Kahuzi-Biega National Park, DR Congo, Reg. Environ. Chang., 12, 951-959, https://doi.org/10.1007/s10113-012-0309-2, 2012.
McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., and Sudmeier-Rieux, K.: Roads and landslides in Nepal: how development affects environmental risk, Nat. Hazards Earth Syst. Sci., 18, 3203-3210, https://doi.org/10.5194/nhess-18-3203-2018, 2018.
Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the location of earthquake induced landslides, Earth Planet. Sci. Lett., 275, 221-232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
Michellier, C., Pigeon, P., Kervyn, F., and Wolff, E.: Contextualizing vulnerability assessment: a support to geo-risk management in central Africa, Nat. Hazards, 82, 27-42, https://doi.org/10.1007/s11069-016-2295-z, 2016.
Migón, P.: 4.10 Weathering and Hillslope Development, in: Treatise on Geomorphology, vol. 4, edited by: Shroder, J. F., Elsevier, San Diego, 159-178, https://doi.org/10.1016/B978-0-12-374739-6.00075-0, 2013.
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich, W. E.: A multidimensional stability model for predicting shallow landslide size and shape across landscapes, J. Geophys. Res.-Earth Surf., 119, 2481-2504, https://doi.org/10.1002/2014JF003135, 2014.
Mokoso, J. M., Habiyaremye, F. M., Janssen, T., van Diggelen, R., Robbrecht, E., and Habimana, H. N.: Diversité des Fougères et leurs alliées le long du gradient altitudinal au sein de l'écosystème forestier des montagnes du Parc National de Kahuzi-Biega (RD CONGO), Int. J. Environ. Stud., 70, 259-283, https://doi.org/10.1080/00207233.2013.778007, 2013.
Monsieurs, E., Kirschbaum, D. B., Tan, J., Maki Mateso, J.-C., Jacobs, L., Plisnier, P.-D., Thiery, W., Umutoni, A., Musoni, D., Bibentyo, T. M., Ganza, G. B., Mawe, G. I., Bagalwa, L., Kankurize, C., Michellier, C., Stanley, T., Kervyn, F., Kervyn, M., Demoulin, A., and Dewitte, O.: Evaluating TMPA Rainfall over the Sparsely Gauged East African Rift, J. Hydrometeorol., 19, 1507-1528, https://doi.org/10.1175/JHM-D-18-0103.1, 2018a. Monsieurs, E., Jacobs, L., Michellier, C., Basimike Tchangaboba, J., Ganza, G. B., Kervyn, F., Maki Mateso, J.-C., Mugaruka Bibentyo, T., Kalikone Buzera, C., Nahimana, L., Ndayisenga, A., Nkurunziza, P., Thiery, W., Demoulin, A., Kervyn, M., and Dewitte, O.: Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment, Landslides, 15, 2195-2209, https://doi.org/10.1007/s10346-018-1008-y, 2018b.
Mugagga, F., Kakembo, V., and Buyinza, M.: A characterisation of the physical properties of soil and the implications for landslide occurrence on the slopes of Mount Elgon, Eastern Uganda, Nat. Hazards, 60, 1113-1131, https://doi.org/10.1007/s11069-011-9896-3, 2012.
Muñoz-Torrero Manchado, A., Allen, S., Ballesteros-Cánovas, J. A., Dhakal, A., Dhital, M. R., and Stoffel, M.: Three decades of landslide activity in western Nepal: new insights into trends and climate drivers, Landslides, 18, 2001-2015, https://doi.org/10.1007/s10346-021-01632-6, 2021.
Musumba Teso, P., Kavira, M., and Katcho, K.: Key Factors Driving Deforestation in North-Kivu Province, Eastern DR-Congo Using GIS and Remote Sensing, Am. J. Geogr. Inf. Syst., 8, 11-25, http://article.sapub.org/10.5923.j.ajgis.20190801.02.html (last access: 3 March 2021), 2019.
Nzabandora, C. K. and Roche, E.: Six millennia of environment evolving on the western ridge of the Kivu Lake in the Mount Kahuzi area (D.R. Congo) Palynological analysis of the Ngushu sedimentary sequence, Geo. Eco. Trop., 39, 1-26, 2015.
OpenStreetMap: Changesets, OpenStreetMap [data set], https: //www.openstreetmap.org/history#map=9/-2.0475/28.5535, last access: 15 July 2020.
Pánek, T., Brežný, M., Kilnar, J., andWinocur, D.: Complex causes of landslides after ice sheet retreat: Post-LGM mass movements in the Northern Patagonian Icefield region, Sci. Total Environ., 758, 143684, https://doi.org/10.1016/j.scitotenv.2020.143684, 2021.
Parker, R. N., Hales, T. C., Mudd, S. M., Grieve, S. W. D. D., and Constantine, J. A.: Colluvium supply in humid regions limits the frequency of storm-triggered landslides, Sci. Rep., 6, 34438, https://doi.org/10.1038/srep34438, 2016.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prakash, N., Manconi, A., and Loew, S.: A new strategy to map landslides with a generalized convolutional neural network, Sci. Rep., 11, 9722, https://doi.org/10.1038/s41598-021-89015-8, 2021.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60-91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Ross, K. A., Smets, B., De Batist, M., Hilbe, M., Schmid, M., and Anselmetti, F. S.: Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift, Geomorphology, 221, 274-285, https://doi.org/10.1016/j.geomorph.2014.05.010, 2014.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533-3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Shu, H., Hürlimann, M., Molowny-Horas, R., González, M., Pinyol, J., Abancó, C., and Ma, J.: Relation between land cover and landslide susceptibility in Val d'Aran, Pyrenees (Spain): Historical aspects, present situation and forward prediction, Sci. Total Environ., 693, 133557, https://doi.org/10.1016/j.scitotenv.2019.07.363, 2019.
Sidle, R. C. and Bogaard, T. A.: Dynamic earth system and ecological controls of rainfall-initiated landslides, Earth-Sci. Rev., 159, 275-291, https://doi.org/10.1016/j.earscirev.2016.05.013, 2016.
Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F.: Erosion processes in steep terrain-Truths, myths, and uncertainties related to forest management in Southeast Asia, For. Ecol. Manage., 224, 199-225, https://doi.org/10.1016/j.foreco.2005.12.019, 2006.
Smets, B., Delvaux, D., Ross, K. A., Poppe, S., Kervyn, M., d'Oreye, N., and Kervyn, F.: The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift, Tectonophysics, 683, 62-76, https://doi.org/10.1016/j.tecto.2016.06.022, 2016.
Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide susceptibility mapping, Nat. Hazards, 87, 145-164, https://doi.org/10.1007/s11069-017-2757-y, 2017.
Tanyaş, H., Allstadt, K. E., and van Westen, C. J.: An updated method for estimating landslide-event magnitude, Earth Surf. Process. Landf., 43, 1836-1847, https://doi.org/10.1002/esp.4359, 2018.
Tanyaş, H., Görüm, T., Kirschbaum, D., and Lombardo, L.: Could road constructions be more hazardous than an earthquake in terms of mass movement, Nat. Hazards, 112, 639-663, https://doi.org/10.1007/s11069-021-05199-2, 2022.
Trefon, T.: Congo's Environmental Paradox: potential and predation in a land of plenty, Zed Books Ltd., London, 194 pp., ISBN 978-1-78360-244-5 hb, 2016.
Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V., Kommareddy, I., and Turubanova, S.: Congo Basin forest loss dominated by increasing smallholder clearing, Sci. Adv., 4, eaat2993, https://doi.org/10.1126/sciadv.aat2993, 2018.
USGS: EarthExplorer, USGS [data set], https://earthexplorer.usgs. gov/, last access: 2 February 2023.
Van Acker, F.: Where did all the land go Enclosure-social struggle in Kivu (D.R.Congo), Rev. Afr. Polit. Econ., 32, 79-98, https://doi.org/10.1080/03056240500120984, 2005.
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., and van Beek, L. P. H.: The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides, Geomorphology, 67, 351-363, https://doi.org/10.1016/j.geomorph.2004.11.001, 2005.
Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., and Vandekerckhove, L.: Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium), Geomorphology, 76, 392-410, https://doi.org/10.1016/j.geomorph.2005.12.003, 2006.
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., and Demoulin, A.: Characteristics of the size distribution of recent and historical landslides in a populated hilly region, Earth Planet. Sci. Lett., 256, 588-603, https://doi.org/10.1016/j.epsl.2007.01.040, 2007.
Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Deckers, J., and De Bievre, B.: Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds, Geomorphology, 52, 299-315, https://doi.org/10.1016/S0169-555X(02)00263-5, 2003.
Vanmaercke, M., Ardizzone, F., Rossi, M., and Guzzetti, F.: Exploring the effects of seismicity on landslides and catchment sediment yield: An Italian case study, Geomorphology, 278, 171-183, https://doi.org/10.1016/j.geomorph.2016.11.010, 2017.
Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkota, S., Derron, M.-H., and Jaboyedoff, M.: Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016, Appl. Geogr., 94, 30-40, https://doi.org/10.1016/j.apgeog.2018.03.003, 2018.
Van de Walle, J., Thiery, W., Brousse, O., Souverijns, N., Demuzere, M., and van Lipzig, N. P. M.: A convection-permitting model for the Lake Victoria Basin: evaluation and insight into the mesoscale versus synoptic atmospheric dynamics, Clim. Dynam., 54, 1779-1799, https://doi.org/10.1007/s00382-019-05088-2, 2020.
Wassmer, P., Schwartz, D., Gomez, C., Ward, S., and Barrere, P.: Geomorphology and sedimentary structures of upper pleistocene to holocene alluvium within the nyabarongo valley (Rwanda). palaeo-climate and palaeoenvironmental implications, Geogr. Fis. Din. Quat., 36, 199-210, https://doi.org/10.4461/GFDQ.2013.36.17, 2013.
Whipple, K. X.: The influence of climate on the tectonic evolution of mountain belts, Nat. Geosci., 2, 97-104, https://doi.org/10.1038/ngeo413, 2009.
Whittaker, A. C.: How do landscapes record tectonics and climate, Lithosphere, 4, 160-164, https://doi.org/10.1130/RF.L003.1, 2012.
Wilken, F., Fiener, P., Ketterer, M., Meusburger, K., Muhindo, D. I., van Oost, K., and Doetterl, S.: Assessing soil redistribution of forest and cropland sites in wet tropical Africa using 239C240Pu fallout radionuclides, SOIL, 7, 399-414, https://doi.org/10.5194/soil-7-399-2021, 2021.