TRPM3; cell biology; cerebellar atrophy; epilepsy; gain-of-function; human; intellectual disability; neurodevelopment; neuroscience; Neurosteroids; Ion Channels; TRPM Cation Channels; TRPM3 protein, human; Animals; Humans; Gain of Function Mutation; Ion Channels/genetics; Mammals/metabolism; Neurodevelopmental Disorders/genetics; Epilepsy/genetics; TRPM Cation Channels/genetics; TRPM Cation Channels/metabolism; Mammals; Neurodevelopmental Disorders; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Abstract :
[en] TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.
Disciplines :
Neurology
Author, co-author :
Burglen, Lydie; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France ; Developmental Brain Disorders Laboratory, Imagine Institute, Paris, France
Van Hoeymissen, Evelien ; Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of Leuven, Leuven, Belgium ; VIB Center for Brain & Disease Research, Leuven, Belgium ; Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of Leuven, Leuven, Belgium
Qebibo, Leila; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France
Barth, Magalie; Department of Genetics, University Hospital of Angers, Angers, France
Belnap, Newell; Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood Disorders, Phoenix, United States
Boschann, Felix; Charité - Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany
Depienne, Christel; Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
De Clercq, Katrien; Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of Leuven, Leuven, Belgium ; VIB Center for Brain & Disease Research, Leuven, Belgium ; Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of Leuven, Leuven, Belgium
Douglas, Andrew G L; University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
Fitzgerald, Mark P; Children's Hospital of Philadelphia, Philadelphia, United States
Foulds, Nicola; Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
Garel, Catherine; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France ; Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, Paris, France
Helbig, Ingo; Children's Hospital of Philadelphia, Philadelphia, United States
Held, Katharina; Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of Leuven, Leuven, Belgium ; VIB Center for Brain & Disease Research, Leuven, Belgium ; Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of Leuven, Leuven, Belgium
Horn, Denise ; Charité - Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany
Janssen, Annelies ; Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of Leuven, Leuven, Belgium ; VIB Center for Brain & Disease Research, Leuven, Belgium
Kaindl, Angela M ; Institute of Cell Biology and Neurobiology, Charité - Universitäts medizin Berlin, Berlin, Germany ; Department of Pediatric Neurology, Charité - Universitäts medizin Berlin, Berlin, Germany ; Charité - Universitäts medizin Berlin, Center for Chronically Sick Children, Berlin, Germany
Narayanan, Vinodh ; Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood Disorders, Phoenix, United States
Prager, Christina; Department of Pediatric Neurology, Charité - Universitäts medizin Berlin, Berlin, Germany ; Charité - Universitäts medizin Berlin, Center for Chronically Sick Children, Berlin, Germany
Rupin-Mas, Mailys; Department of Neuropediatrics, University Hospital of Angers, Angers, France
Afenjar, Alexandra; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France
Zhao, Siyuan ; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
Ruggiero, Sarah M; Children's Hospital of Philadelphia, Philadelphia, United States
Thomas, Simon; Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom
Valence, Stéphanie; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France ; Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HP, Paris, France
Van Maldergem, Lionel; Centre de Génétique Humaine, Université de Franche-Comté Besançon, Besancon, France ; Center of Clinical Investigation 1431, National Institute of Health and Medical Research, Besancon, France
Rohacs, Tibor ; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
Rodriguez, Diana; Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne University, Paris, France ; Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HP, Paris, France
Dyment, David; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
Voets, Thomas; Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of Leuven, Leuven, Belgium ; VIB Center for Brain & Disease Research, Leuven, Belgium
Vriens, Joris ; Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of Leuven, Leuven, Belgium
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen QEMF - Queen Elisabeth Medical Foundation VIB - Vlaams Instituut voor Biotechnologie
Funding text :
We thank all parents and children for their willingness to participate to this study. We thank all members of the Laboratory of Endometrium, Endometriosis and Reproductive Medicine (LEERM) and the members of the Laboratory of Ion Channel Research (LICR) Leuven for their help during experiments and useful discussions. We thank Dr. L Gaspers for the kind gift on GCaMP6, and Bahar Bazeli for help with visualizing the TRPM3 variants on the cryo-EM structure. The study was supported by the Einstein Stiftung Fellowship through the Günter Endres Fond. We thank the Research Foundation-Flanders FWO, (G.0D1417N, G.084515N, G.0A6719N), the Research Council of the KU Leuven (C14/18/106, C3/21/049) for funding the project of JV, Einstein Stiftung for AMK, and the association “Connaître les syndromes cérébelleux” for funding the project of LB. EVH is a fellow of the Research Foundation-Flanders FWO (11E782N).We thank all parents and children for their willingness to participate to this study. We thank all members of the Laboratory of Endometrium, Endometriosis and Reproductive Medicine (LEERM) and the members of the Laboratory of Ion Channel Research (LICR) Leuven for their help during experiments and useful discussions. We thank Dr. L Gaspers for the kind gift on GCaMP6, and Bahar Bazeli for help with visualizing the TRPM3 variants on the cryo-EM structure. The study was supported by the Einstein Stiftung Fellowship through the Günter Endres Fond.We thank the Research Foundation-Flanders FWO, (G.0D1417N, G.084515N, G.0A6719N), the Research Council of the KU Leuven (C14/18/106, C3/21/049) for funding the project of JV, Einstein Stiftung for AMK, and the association “Connaître les syndromes cérébelleux” for funding the project of LB. EVH is a fellow of the Research Foundation-Flanders FWO (11E782N).
Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, Hirano M, Santpere G, Roco C, Rosenberg AB, Lorente-Galdos B, Gulden FO, O’Day D, Overman LM, Lisgo SN, Alexandre P, Sestan N, Doherty D, Dobyns WB, Seelig G, et al. 2021. Spatial and cell type transcriptional landscape of human cerebellar development. Nature Neuroscience 24:1163–1175. DOI: https://doi.org/10.1038/s41593-021-00872-y, PMID: 34140698
Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T. 2017. Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6:e26147. DOI: https://doi.org/10.7554/ eLife.26147, PMID: 28829742
Behrendt M, Gruss F, Enzeroth R, Dembla S, Zhao S, Crassous PA, Mohr F, Nys M, Louros N, Gallardo R, Zorzini V, Wagner D, Economou A, Rousseau F, Schymkowitz J, Philipp SE, Rohacs T, Ulens C, Oberwinkler J. 2020. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. PNAS 117:29090–29100. DOI: https://doi.org/10.1073/pnas.2001177117, PMID: 33122432
Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG, Nuñez-Badinez P, Schwenk J, Nürnberg B, Cohen A, Philipp SE, Greffrath W, Bünemann M, Oliver D, Zakharian E, Schmidt M, et al. 2017. Anti-Nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife 6:e26280. DOI: https://doi.org/10.7554/ eLife.26280, PMID: 28826482
de Sainte Agathe JM, Van-Gils J, Lasseaux E, Arveiler B, Lacombe D, Pfirrmann C, Raclet V, Gaston L, Plaisant C, Aupy J, Trimouille A. 2020. Confirmation and expansion of the phenotype associated with the recurrent p. val837met variant in TRPM3. European Journal of Medical Genetics 63:103942. DOI: https://doi.org/10.1016/j. ejmg.2020.103942, PMID: 32439617
Dyment DA, Terhal PA, Rustad CF, Tveten K, Griffith C, Jayakar P, Shinawi M, Ellingwood S, Smith R, van Gassen K, McWalter K, Innes AM, Lines MA. 2019. De novo substitutions of TRPM3 cause intellectual
disability and epilepsy. European Journal of Human Genetics 27:1611–1618. DOI: https://doi.org/10.1038/ s41431-019-0462-x, PMID: 31278393
Fukuda T, Hiraide T, Yamoto K, Nakashima M, Kawai T, Yanagi K, Ogata T, Saitsu H. 2020. Exome reports a de novo GNB2 variant associated with global developmental delay, intellectual disability, and dysmorphic features. European Journal of Medical Genetics 63:103804. DOI: https://doi.org/10.1016/j.ejmg.2019.103804, PMID: 31698099
Gauthier LW, Chatron N, Cabet S, Labalme A, Carneiro M, Poirot I, Delvert C, Gleizal A, Lesca G, Putoux A. 2021. Description of a novel patient with the TRPM3 recurrent p.val837met variant. European Journal of Medical Genetics 64:104320. DOI: https://doi.org/10.1016/j.ejmg.2021.104320, PMID: 34438093
Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. 2003. Molecular and functional characterization of the melastatin-related cation channel TRPM3. The Journal of Biological Chemistry 278:21493–21501. DOI: https:// doi.org/10.1074/jbc.M300945200, PMID: 12672799
Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of Biological Chemistry 260:3440–3450. DOI: https://doi.org/10.1016/ S0021-9258(19)83641-4, PMID: 3838314
Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck JC, Marchand A, Reeh PW, Chaltin P, Voets T, Vriens J. 2015. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. PNAS 112:E1363–E1372. DOI: https://doi.org/10.1073/pnas.1419845112, PMID: 25733887
Held K, Tóth BI. 2021. Trpm3 in brain (patho) physiology. Frontiers in Cell and Developmental Biology 9:635659. DOI: https://doi.org/10.3389/fcell.2021.635659, PMID: 33732703
Held K, Aloi VD, Freitas ACN, Janssens A, Segal A, Przibilla J, Philipp SE, Wang YT, Voets T, Vriens J. 2022. Pharmacological properties of TRPM3 isoforms are determined by the length of the pore loop. British Journal of Pharmacology 179:3560–3575. DOI: https://doi.org/10.1111/bph.15223, PMID: 32780479
Hoffmann A, Grimm C, Kraft R, Goldbaum O, Wrede A, Nolte C, Hanisch U-K, Richter-Landsberg C, Brück W, Kettenmann H, Harteneck C. 2010. Trpm3 is expressed in sphingosine-responsive myelinating oligodendrocytes. Journal of Neurochemistry 114:654–665. DOI: https://doi.org/10.1111/j.1471-4159.2010. 06644.x, PMID: 20163522
Kang Q, Yang L, Liao H, Yang S, Kuang X, Ning Z, Liao C, Chen B. 2021. A Chinese patient with developmental and epileptic encephalopathies (dee) carrying a TRPM3 gene mutation: a paediatric case report. BMC Pediatrics 21:256. DOI: https://doi.org/10.1186/s12887-021-02719-8, PMID: 34074259
Krügel U, Straub I, Beckmann H, Schaefer M. 2017. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158:856–867. DOI: https://doi.org/10.1097/j.pain.0000000000000846, PMID: 28106668
Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, Duong TE, Gao D, Chun J, Kharchenko PV, Zhang K. 2018. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nature Biotechnology 36:70–80. DOI: https://doi.org/10.1038/nbt.4038, PMID: 29227469
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, et al. 2016. Consensus paper: cerebellar development. Cerebellum 15:789–828. DOI: https://doi.org/ 10.1007/s12311-015-0724-2, PMID: 26439486
Lines MA, Goldenberg P, Wong A, Srivastava S, Bayat A, Hove H, Karstensen HG, Anyane-Yeboa K, Liao J, Jiang N, May A, Guzman E, Morleo M, D’Arrigo S, Ciaccio C, Pantaleoni C, Castello R, McKee S, Ong J, Zibdeh-Lough H, et al. 2022. Phenotypic spectrum of the recurrent TRPM3 p.(val837met) substitution in seven individuals with global developmental delay and hypotonia. American Journal of Medical Genetics. Part A 188:1667–1675. DOI: https://doi.org/10.1002/ajmg.a.62673, PMID: 35146895
Lodder EM, De Nittis P, Koopman CD, Wiszniewski W, Moura de Souza CF, Lahrouchi N, Guex N, Napolioni V, Tessadori F, Beekman L, Nannenberg EA, Boualla L, Blom NA, de Graaff W, Kamermans M, Cocciadiferro D, Malerba N, Mandriani B, Akdemir ZHC, Fish RJ, et al. 2016. Gnb5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. American Journal of Human Genetics 99:704–710. DOI: https://doi.org/10.1016/j.ajhg.2016.06.025, PMID: 27523599
Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. 2005. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. The Journal of Biological Chemistry 280:22540–22548. DOI: https://doi.org/10. 1074/jbc.M503092200, PMID: 15824111
Oberwinkler J, Philipp SE. 2014. TRPM3. Handbook of Experimental Pharmacology. Springer. p. 427–459. DOI: https://doi.org/10.1007/978-3-642-54215-2_17, PMID: 24756716
Owsianik G, D’hoedt D, Voets T, Nilius B. 2006. Structure-Function relationship of the trp channel superfamily. Reviews of Physiology, Biochemistry and Pharmacology 156:61–90 PMID: 16634147.
Petrovski S, Küry S, Myers CT, Anyane-Yeboa K, Cogné B, Bialer M, Xia F, Hemati P, Riviello J, Mehaffey M, Besnard T, Becraft E, Wadley A, Politi AR, Colombo S, Zhu X, Ren Z, Andrews I, Dudding-Byth T, Schneider AL, et al. 2016. Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. American Journal of Human Genetics 98:1001–1010. DOI: https://doi.org/10.1016/j.ajhg.2016.03.011, PMID: 27108799
Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. 2017. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6:e26138. DOI: https://doi.org/10.7554/eLife.26138, PMID: 28826490
Quang D, Chen Y, Xie X. 2015. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–763. DOI: https://doi.org/10.1093/bioinformatics/btu703, PMID: 25338716
Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, Röpke A, Moog U, Riess A, Thiel CT, et al. 2012. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380:1674–1682. DOI: https://doi.org/10.1016/S0140-6736(12)61480-9, PMID: 23020937
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. 2019. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews. Neuroscience 20:298–313. DOI: https://doi.org/10.1038/s41583-019-0152-2, PMID: 30923348
Schmahmann JD. 2019. The cerebellum and cognition. Neuroscience Letters 688:62–75. DOI: https://doi.org/ 10.1016/j.neulet.2018.07.005, PMID: 29997061
Sobreira N, Schiettecatte F, Valle D, Hamosh A. 2015. GeneMatcher: a matching tool for connecting Investigators with an interest in the same gene. Human Mutation 36:928–930. DOI: https://doi.org/10.1002/ humu.22844, PMID: 26220891
Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN. 2017. The human gene mutation database: towards a comprehensive Repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics 136:665–677. DOI: https://doi.org/10.1007/s00439-017-1779-6, PMID: 28349240
Su S, Yudin Y, Kim N, Tao YX, Rohacs T. 2021. Trpm3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury. The Journal of Neuroscience 41:2457–2474. DOI: https://doi.org/10.1523/JNEUROSCI. 1551-20.2020, PMID: 33478988
Van Hoeymissen E, Held K, Nogueira Freitas AC, Janssens A, Voets T, Vriens J. 2020. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. eLife 9:e57190. DOI: https://doi.org/10.7554/eLife.57190, PMID: 32427099
Vangeel L, Benoit M, Miron Y, Miller PE, De Clercq K, Chaltin P, Verfaillie C, Vriens J, Voets T. 2020. Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. British Journal of Pharmacology 177:2683–2695. DOI: https://doi.org/10.1111/bph.14994, PMID: 31985045
Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, Bhaduri A, Goyal N, Rowitch DH, Kriegstein AR. 2019. Single-Cell genomics identifies cell type-specific molecular changes in autism. Science 364:685–689. DOI: https://doi.org/10.1126/science.aav8130, PMID: 31097668
Vriens J, Owsianik G, Janssens A, Voets T, Nilius B. 2007. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. The Journal of Biological Chemistry 282:12796– 12803. DOI: https://doi.org/10.1074/jbc.M610485200, PMID: 17341586
Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T. 2011. Trpm3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494. DOI: https://doi.org/10.1016/j.neuron.2011.02.051, PMID: 21555074
Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S, Nilius B, Vennekens R, Voets T. 2014. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology 10:188–195. DOI: https://doi.org/10.1038/nchembio.1428, PMID: 24390427
Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J. 2008. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nature Cell Biology 10:1421–1430. DOI: https://doi.org/10.1038/ncb1801, PMID: 18978782
Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF. 2011. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. Journal of Neurochemistry 119:474–485. DOI: https://doi.org/10.1111/j.1471-4159.2011.07441.x, PMID: 21955047
Zhao S, Yudin Y, Rohacs T. 2020. Disease-Associated mutations in the human TRPM3 render the channel overactive via two distinct mechanisms. eLife 9:e55634. DOI: https://doi.org/10.7554/eLife.55634, PMID: 32343227
Zhao C, MacKinnon R. 2023. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111:81–91. DOI: https://doi.org/10.1016/j.neuron.2022.10.002, PMID: 36283409