Bone regeneration; Bone scaffolds; Calcium phosphates; Ionic substitution; Octacalcium phosphate; Osteogenesis; Biological properties; Biomedical applications; Bone tissue regeneration; Ionic substitutions; Osteogenic; Property; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Process Chemistry and Technology; Surfaces, Coatings and Films; Materials Chemistry
Abstract :
[en] Numerous studies have found that octacalcium phosphate possesses promising biological properties applicable to bone tissue regeneration. To further improve the osteogenic and regenerative properties of octacalcium phosphate, substitutions with Sr2+, Zn2+, Mg2+, Fe3+, Na+, F− and CO32− ions have been investigated in recent years. Despite that, hydroxyapatite is still considered the most promising calcium phosphate for bioactive bone grafts due to its biocompatibility, physicochemical similarity to biological apatite, osteoconductivity and strong bonding with the surrounding tissue. However, better biological properties of octacalcium phosphate in vivo as well as a larger volume of regenerated bone tissue, compared to hydroxyapatite, were confirmed by many studies. This review summarizes recent and relevant studies on cationic and anionic substitutions in the crystal lattice of octacalcium phosphate and its in vitro biological performance. It also discusses future challenges and prospects for the use of substituted octacalacium phosphate.
Disciplines :
Chemistry
Author, co-author :
Ressler, Antonia; Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
Ivanišević, Irena; Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
Žužić, Andreja; Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
Somers, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Univ. Polytechnique Hauts-de-France, EA 2443 – LMCPA – Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; Belgian Ceramic Research Centre – Member of EMRA, Mons, Belgium
Language :
English
Title :
The ionic substituted octacalcium phosphate for biomedical applications: A new pathway to follow?
Zhu, G., Zhang, T., Chen, M., Yao, K., Huang, X., Zhang, B., Li, Y., Liu, J., Wang, Y., Zhao, Z., Bone physiological microenviroment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact. Mater. 6 (2021), 4110–4140, 10.1016/j.bioactmat.2021.03.043.
Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., Cooper, C., Stenmark, J., McCloskey, E.V., Jönsson, B., Kanis, J.A., Osteoporosis in the European union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos, 8, 2013, 136, 10.1007/s11657-013-0136-1.
Dorozhkin, S.V., Epple, M., Biological and medical significance of calcium phosphates. Angew. Chem., Int. Ed. Engl. 41 (2002), 3130–3146, 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1.
Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31 (2013), 594–605, 10.1016/j.tibtech.2013.06.005.
Dorozhkin, S.V., Calcium orthophosphates: occurrence, properties and major applications. Bioceram. Dev. Appl., 4, 2014, 1000081, 10.4172/2090-5025.1000081.
Cordonnier, T., Sohier, J., Rosset, P., Layrolle, P., Biomimetic materials for bone tissue engineering – state of the art and future trends. Adv. Eng. Mater. 13 (2011), 135–150, 10.1002/adem.201080098.
Ratha, I., Datta, P., Balla, V.K., Nandi, S.K., Kundu, B., Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: a review. Ceram. Int. 47 (2021), 4426–4445, 10.1016/j.ceramint.2020.10.112.
Von Euw, S., Wang, Y., Laurent, G., Drouet, C., Babonneau, F., Nassif, N., Azais, T., Bone mineral: new insights into its chemical composition. Sci. Rep., 9, 2019, 8456, 10.1038/s41598-019-44620-6.
Matsunaga, K., Murata, H., Strontium substitution in bioactive calcium phosphates: a first-principles study. J. Phys. Chem. B 113 (2009), 3584–3589, 10.1021/jp808713m.
Matsunaga, K., First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J. Chem. Phys., 8, 2008, 245101, 10.1063/1.2940337.
Boanini, E., Gazzano, M., Bigi, A., Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6 (2010), 1882–1894, 10.1016/j.actbio.2009.12.041.
Davies, E., Duer, M.J., Ashbrook, S.E., Griffin, J.M., Applications of NMR crystallography to problems in biomineralization: refinement of the crystal structure and 31P solid-state NMR spectral assignment of octacalcium phosphate. J. Am. Chem. Soc. 134 (2012), 12508–12515, 10.1021/ja3017544.
Davies, E., Müller, K.H., Wong, W.C., Pickard, C.J., Reid, D.G., Skepper, J.N., Duer, M.J., Proc. Natl. Acad. Sci. Unit. States Am. 111 (2014), 1354–1363, 10.1073/pnas.1315080111.
Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44 (2011), 1272–1276, 10.1107/S0021889811038970.
Uskoković, V., Ion-doped hydroxyapatite: an impasse or the road to follow?. Ceram. Int. 46 (2020), 11443–11465, 10.1016/j.ceramint.2020.02.001.
Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N., Ivanković, H., Ionic substituted hydroxyapatite for bone regeneration applications: a review. Open Ceram., 6, 2021, 100122, 10.1016/j.oceram.2021.100122.
Panda, S., Kumar Biswas, C., Paul, S., A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceram. Int. 47 (2021), 28122–28144, 10.1016/j.ceramint.2021.07.100.
Lotsari, A., Rajasekharan, A.K., Halvarsson, M., Andersson, M., Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun., 9, 2018, 4170, 10.1038/s41467-018-06570-x.
Pompe, W., Worch, H., Habraken, W.J.E.M., Simon, P., Kniep, R., Ehrlich, H., Paufler, P., Octacalcium phosphate – a metastable mineral phase controls the evolution of scaffold forming proteins. J. Mater. Chem. B., 3, 2015, 5318, 10.1039/C5TB00673B.
Tseng, Y.-H., Mou, C.-Y., Chan, J.C.C., Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J. Am. Chem. Soc. 12 (2006), 6909–6918, 10.1021/ja060336u.
Eanes, E.D., Gillessen, I.H., Posner, A.S., Intermediate states in the precipitation of hydroxyapatite. Nature 208 (1965), 365–367, 10.1038/208365a0.
Iijima, M., Nelson, D.G.A., Pan, Y., Kreinbrink, A.T., Adachi, M., Goto, T., Moriwaki, Y., Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F− ions on apatite/OCP/apatite structure formation. Calcif. Tissue Int. 59 (1996), 377–384, 10.1007/s002239900143.
Habraken, W., Habibovic, P., Epple, M., Bohner, M., Calcium phosphates in biomedical applications: materials for the future?. Mater. Today 19 (2016), 69–87, 10.1016/j.mattod.2015.10.008.
Mahamid, J., Sharir, A., Addadi, L., Weiner, S., Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 12748–12753, 10.1073/pnas.0803354105.
Mahamid, J., Aichmayer, B., Shimoni, E., Ziblat, R., Li, C., Siegel, S., Paris, O., Fratzl, P., Weiner, S., Addadi, L., Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 6316–6321, 10.1073/pnas.0914218107.
Beniash, E., Metzler, R.A., Lam, R.S.K., Gilbert, P.U.P.A., Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 166 (2009), 133–143, 10.1016/j.jsb.2009.02.001.
Mahamid, J., Sharir, A., Gur, D., Zelzer, E., Addadi, L., Weiner, S., Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J. Struct. Biol. 174 (2011), 527–535, 10.1016/j.jsb.2011.03.014.
Nitiputri, K., Ramasse, Q.M., Autefage, H., McGilvery, C.M., Boonrungsiman, S., Evans, N.D., Stevens, M.M., Porter, A.E., Nanoanalytical electron microscopy reveals a sequential mineralization process involving carbonate-containing amorphous precursors. ACS Nano 7 (2016), 6826–6835, 10.1021/acsnano.6b02443.
Kerschnitzki, M., Akiva, A., Shoham, A.B., Asscher, Y., Wagermaier, W., Fratzl, P., Addadi, L., Weiner, S., Bone mineralization pathways during the rapid growth of embryonic chicken long bones. J. Struct. Biol. 195 (2016), 82–92, 10.1016/j.jsb.2016.04.011.
Simon, P., Grüner, D., Worch, H., Pompe, W., Lichte, H., Khassawna, T.E., Heiss, C., Wenisch, S., Kniep, R., First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep., 8, 2018, 13696, 10.1038/s41598-018-31983-5.
Habraken, W.J.E.M., Tao, J., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., DeYoreo, J.J., Sommerdijk, N.A.J.M., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 4, 2013, 1507, 10.1038/ncomms2490.
Seibel, M.J., Biochemical markers of bone turnover: part I: biochemistry and variability. Clin. Biochem. Rev. 26 (2005), 97–122.
Datta, H.K., Ng, W.F., Walker, J.A., Tuck, S.P., Varanasi, S.S., The cell biology of bone metabolism. J. Clin. Pathol. 61 (2008), 577–587, 10.1136/jcp.2007.048868.
Ansari, M., Bone tissue regeneration: biology, strategies and interface studies. Prog. Biomater. 8 (2019), 223–237, 10.1007/s40204-019-00125-z.
Suzuki, O., Nakamura, M., Miyasaka, Y., Kagayama, M., Sakurai, M., Bone formation on synthetic precursors of hydroxyapatite. Tohoku J. Exp. Med. 164 (1991), 37–50, 10.1620/tjem.164.37.
Imaizumi, H., Sakurai, M., Kashimoto, O., Kikawa, T., Suzuki, O., Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif. Tissue Int. 78 (2006), 45–54, 10.1007/s00223-005-0170-0.
Suzuki, O., Kamakura, S., Katagiri, T., Nakamura, M., Zhao, B., Honda, Y., Kamijo, R., Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27 (2006), 2671–2681, 10.1016/j.biomaterials.2005.12.004.
Sugiura, Y., Munar, M.L., Ishikawa, K., Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor. J. Mater. Sci. Mater. Med., 29, 2018, 151, 10.1007/s10856-018-6162-1.
Kobayashi, K., Anada, T., Handa, T., Kanda, N., Yoshinari, M., Takahashi, T., Suzuki, O., Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate. ASC Appl. Mater. Interfaces 6 (2014), 22602–22611, 10.1021/am5067139.
Sai, Y., Shiwaku, Y., Anada, T., Tsuchiya, K., Takahashi, T., Suzuki, O., Capacity of octacalcium phiosphate to promote osteoblastic differentiation towards osteocytes in vitro. Acta Biomater. 69 (2018), 362–371, 10.1016/j.actbio.2018.01.026.
Shi, H., He, F., Ye, J., Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius. J. Mater. Chem. B 4 (2016), 1712–1719, 10.1039/C5TB02247A.
Shi, H., Ye, X., Zhang, J., Wu, T., Yu, T., Zhou, C., Ye, J., A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium. Bioact. Mater. 6 (2021), 1267–1282, 10.1016/j.bioactmat.2020.10.025.
He, J., Ye, H., Li, Y., Fang, J., Mei, Q., Lu, X., Ren, F., Cancellous-bone-like porous iron scaffold coated with strontium incorporated octacalcium phosphate nanowhiskers for bone regeneration. ACS Biomater. Sci. Eng. 5 (2019), 509–518, 10.1021/acsbiomaterials.8b01188.
Sugiura, Y., Saito, Y., Endo, T., Makita, Y., Effect of the ionic radius of alkali metal ions on octacalcium phosphate formation via different substitution modes. Cryst. Growth Des. 19 (2019), 4162–4171, 10.1021/acs.cgd.9b00656.
Sugiura, Y., Makita, Y., Sodium inhibits the formation of ammonium-substituted solid solutions of octacalcium phosphate by filling its substitution site. Dalton Trans. 48 (2019), 1386–1391, 10.1039/C8DT04697B.
Shi, H., Ye, X., Wu, T., Zhang, J., Ye, J., Regulating the physicochemical and biological properties in vitro of octacalcium phosphate by substitution with strontium in a large doping range. Mater. Today Chem. 5 (2017), 81–91, 10.1016/j.mtchem.2017.07.003.
Boanini, E., Torricelli, P., Fini, M., Sima, F., Serban, N., Mihailescu, I.N., Bigi, A., Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. J. Inorg. Biochem. 107 (2012), 65–72, 10.1016/j.jinorgbio.2011.11.003.
Fan, L., Zhang, Y., Hu, R., Lin, C., Shi, W., Tian, Z., Strontium substituted octacalcium phosphate coatings by electrochemical deposition and their dose-dependent bioactivities. Mater. Lett., 272, 2020, 127844, 10.1016/j.matlet.2020.127844.
Ressler, A., Cvetnić, M., Antunović, M., Marijanović, I., Ivanković, M., Ivanković, H., Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J. Biomed. Mater. Res. B Appl. Biomater. 108 (2020), 1697–1709, 10.1002/jbm.b.34515.
Zeng, S., Shi, H., Yu, T., Zhou, C., Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate. Adv. Powder Technol. 28 (2017), 3288–3295, 10.1016/j.apt.2017.10.006.
Boanini, E., Gazzano, M., Rubini, K., Bigi, A., Collapsed octacalcium phosphate stabilized by ionic substitutions, Cryst. Growth Des. 10 (2010), 3612–3617, 10.1021/cg100494f.
Honda, Y., Anada, T., Morimoto, S., Shiwaku, Y., Suzuki, O., Effect of Zn2+ on the physicochemical characteristics of octacalcium phosphate and its hydrolysis into apatitic phases. Cryst. Growth Des. 11 (2011), 1462–1468, 10.1021/cg1009835.
Sugiura, Y., Obika, H., Horie, M., Niitsu, K., Makita, Y., Aesthetic silver-doped octacalcium phosphate powders exhibiting both contact antibacterial ability and low cytotoxicity. ACS Omega 5 (2020), 24434–24444, 10.1021/acsomega.0c02868.
Sugiura, Y., Horie, M., Prediction of sodium substitution sites in octacalcium phosphate: the relationships of ionic pair ratios in reacting solutions. Cerâmica 4 (2021), 240–248, 10.3390/ceramics4020018.
Sugiura, Y., Saito, Y., Endo, T., Makita, Y., Effect of the ionic radius of alkali metal ions on octacalcium phosphate formation via different substitution modes. Cryst. Growth Des. 19 (2019), 4162–4171, 10.1021/acs.cgd.9b00656.
Tsyganova, A.A., Golovanova, O.A., Role of Mg2+, Sr2+, and F‒ ions in octacalcium phosphate crystallization. Inorg. Mater. 53 (2017), 1261–1269, 10.1134/S0020168517120184.
Shen, D., Horiuchi, N., Nozaki, S., Miyashin, M., Yamashita, K., Nagai, A., Yamashita, K., Okazaki, M., Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate. Bio Med. Mater. Eng. 28 (2017), 9–21, 10.3233/BME-171651.
Somers, N., Lasgorceix, M., Overview of substitutes for bone Replacement: natural and synthetic products. Pomeroy, M., (eds.) Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, Elsevier, 473–492, 10.1016/B978-0-12-818542-1.00052-7.
Goonoo, N., Bhaw-Luximon, A., Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv. 9 (2019), 18124–18146, 10.1039/C9RA02765C.
Ressler, A., Antunović, M., Cvetnić, M., Ivanković, M., Ivanković, H., Selenite substituted calcium phosphates: preparation, characterization, and cytotoxic activity. Materials, 14, 2021, 3436, 10.3390/ma14123436.
Wang, W., Yeung, K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2 (2017), 224–247, 10.1016/j.bioactmat.2017.05.007.
Pilmane, M., Salma-Ancane, K., Loca, D., Locs, J., Berzina-Cimdina, L., Strontium and strontium ranelate: historical review of some of their functions. Mater. Sci. Eng. C Biol. Appl. 78 (2017), 1222–1230, 10.1016/j.msec.2017.05.042.
Rokisi, S., Koutsoukos, P., Crystal growth of calcium phosphates from aqueous solutions in the presence of strontium. Chem. Eng. Sci. 77 (2012), 157–164, 10.1016/j.ces.2012.02.049.
Birgani, Z.T., Malhotra, A., van Blitterswijk, C.A., Habibovic, P., Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. J. Biomed. Mater. Res. 104 (2016), 1946–1960, 10.1002/jbm.a.35725.
Zhang, X., Wang, B., Ma, L., Xie, L., Yang, H., Li, Y., Wang, S., Qiao, H., Lin, H., Lan, J., Huang, Y., Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: a potential multifunctional biological coating. Ceram. Int. 46 (2020), 27758–27773, 10.1016/j.ceramint.2020.07.275.
Geng, Z., Cui, Z., Li, Z., Zhu, S., Liang, Y., Liu, Y., Li, X., He, Y., Yu, X., Wang, R., Yang, X., Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating. Mater. Sci. Eng. C Mater. Biol. Appl. 58 (2016), 467–477, 10.1016/j.msec.2015.08.061.
Sugiura, Y., Makita, Y., Sodium induces octacalcium phosphate formation and enhances its layer structure by affecting the hydrous layer phosphate. Cryst. Growth Des. 18 (2018), 6165–6171, 10.1021/acs.cgd.8b01030.
Sugiura, Y., Horie, M., Fabrication of silver-doped apatite powders from silver-substituted octacalcium phosphate powders via solid-solid phase-conversion process. Ceram. Int. 47 (2021), 25614–25621, 10.1016/j.ceramint.2021.05.287.
Tomazic, B.B., Mayer, I., Brown, W.E., Ion incorporation into octacalcium phosphate hydrolyzates. J. Cryst. Growth 108 (1991), 670–682, 10.1016/0022-0248(91)90247-3.
Pieters, I.Y., De Maeyer, E.A.P., Verbeeck, R.M.H., Stoichiometry of K+- and CO32--containing apatites prepared by the hydrolysis of octacalcium phosphate. Inorg. Chem. 35 (1996), 5791–5797, 10.1021/ic960213i.
Iijima, M., Onuma, K., Roles of fluoride on octacalcium phosphate and apatite formation on amorphous calcium phosphate substrate. Cryst. Growth Des. 18 (2018), 2279–2288, 10.1021/acs.cgd.7b01717.
Marković, M., Fowler, B.O., Brown, W.E., Octacalcium phosphate carboxylates. 1. Preparation and identification. Chem. Mater. 5 (1993), 1401–1405, 10.1021/cm00034a007.
Yokoi, T., Kamitakahara, M., Ohtsuki, C., Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain. Dalton Trans. 44 (2015), 7943–7950, 10.1039/C4DT03943B.
Yokoi, T., Goto, T., Hara, M., Sekino, T., Seki, T., Kamitakahara, M., Ohtsuki, C., Kitaoka, S., Takahashi, S., Kawashita, M., Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Commun. Chem., 4, 2021, 4, 10.1038/s42004-020-00443-5.
Yokoi, T., Goto, T., Kitaoka, S., Transformation of dicalcium phosphate dihydrate into octacalcium phosphate with incorporated dicarboxylate ions. J. Ceram. Soc. Jpn. 126 (2018), 462–468, 10.2109/jcersj2.18016.
Yokoi, T., Kato, H., Kim, I.Y., Kikuta, K., Kawashita, M., Ohtsuki, C., Synthesis of octacalcium phosphate with incorporated succinate and suberate ions. Ceram. Int. 38 (2012), 3815–3820, 10.1016/j.ceramint.2012.01.030.
Yokoi, T., Kawashita, M., Understanding the steric structures of dicarboxylate ions incorporated in octacalcium phosphate crystals. Materials, 14, 2021, 2703, 10.3390/ma14112703.
Trombetta, R., Inzana, J.A., Schwarz, E.M., Kates, S.L., Awad, H.A., 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 45 (2017), 23–44, 10.1007/s10439-016-1678-3.
Sugiura, Y., Makita, Y., Tris(hydroxymethyl)aminomethane substitution into octacalcium phosphate. Chem. Lett. 48 (2019), 1304–1307, 10.1246/cl.190553.
Sugiura, Y., Niitsu, K., Saito, Y., Endo, T., Horie, M., Inorganic process for wet silica-doping of calcium phosphate. RSC Adv., 11, 2021, 12330, 10.1039/D1RA00288K.