Insight into the interactions of albumin with TiO2 nanomaterials and calcium phosphate-based biomaterials by kinetic adsorption and spectroscopic studies
Erceg, Ina; Strasser, Vida; Somers, Nicolaset al.
2023 • In Journal of Molecular Liquids, 383, p. 122122
BSA; Calcium phosphates; Fluorescence spectroscopy; Kinetic of adsorption; TiO2 nanomaterials; UV–Vis spectroscopy; Adsorption studies; Bovine serum albumin adsorption; Bovine serum albumins; In-vivo; Key factors; Spectroscopic studies; TiO 2; TiO2 nanomaterial; UV/ Vis spectroscopy; Electronic, Optical and Magnetic Materials; Atomic and Molecular Physics, and Optics; Condensed Matter Physics; Spectroscopy; Physical and Theoretical Chemistry; Materials Chemistry
Abstract :
[en] Among key factors determining the fate of biomaterials in vivo are their interactions with blood serum proteins, which can lead to either successful integration or rejection/encapsulation. Although there are a number of studies investigating the interactions between proteins and bioimplants, comparable data for different types of biomaterials are lacking. To fill this gap, the adsorption kinetics and binding interactions of bovine serum albumin (BSA) with calcium phosphates (CaPs), namely hydroxyapatite (HA) and calcium deficient apatite (CaDHA), different TiO2 nanomaterials (TiNMs) presenting various morphologies such as nanoparticles (TiNPs), nanoplatelets (TiNPls), nanotubes (TiNTs) and nanowires (TiNWs), as well as their composites with CaDHA (CaDHA/TiNMs) were investigated. The kinetics of BSA adsorption on all studied materials was best described by pseudo-second order kinetics. The rate coefficient values obtained for the composites were lower than those for CaDHA and the corresponding TiNMs, while the adsorption density was higher for the composites than for CaDHA, except for the composites with TiNTs. Adsorption on TiNWs, CaDHA and all composites involved intraparticle diffusion, which was the rate-limiting step only for CaDHA/TiNTs. Fluorimetric titration experiments revealed that the number of binding sites was in larger than 1, except for TiNTs and TiNWs, indicating positive binding cooperativity. Interestingly, the values of the binding constants were lower for the TiNMs with a higher adsorption rate coefficient. Overall, BSA adsorption on the studied materials proved to be a complex process, which depended on the different surface properties of the adsorbents. Which property had a dominant role depended on the chemical identity of the adsorbent. The obtained comparable data for different types of materials point to the way of modifying their protein adsorption and binding properties.
Disciplines :
Chemistry
Author, co-author :
Erceg, Ina ; Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Strasser, Vida ; Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Somers, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Université Polytechnique Hauts de France (UPHF), FR CERAMATHS-DMP Mont Houy, Valenciennes, France
Jurković, Marta ; Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Kontrec, Jasminka; Laboratory for Precipitation Processes, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Kralj, Damir ; Laboratory for Precipitation Processes, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Barbir, Rinea; Institute for Medical Research and Occupational Health, Zagreb, Croatia
Vrček, Ivana Vinković; Institute for Medical Research and Occupational Health, Zagreb, Croatia
Lasgorceix, Marie ; Université Polytechnique Hauts de France (UPHF), FR CERAMATHS-DMP Mont Houy, Valenciennes, France
Leriche, Anne; Université Polytechnique Hauts de France (UPHF), FR CERAMATHS-DMP Mont Houy, Valenciennes, France
Sikirić, Maja Dutour; Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Language :
English
Title :
Insight into the interactions of albumin with TiO2 nanomaterials and calcium phosphate-based biomaterials by kinetic adsorption and spectroscopic studies
HRZZ - Hrvatska Zaklada Za Znanost Ministry of Science, Education and Sports
Funding text :
Financial support from the Croatian Science Foundation, Grant HRZZ- IP-2018-01-1493 and COGITO project “Systematic investigation of adsorption of proteins on calcium phosphate based bioceramics for bone tissue engineering” is greatly acknowledged. The authors would like to express gratitude to Branka Mihaljević and Ivana Tartaro Buljak for their help with UV-Vis measurements, and Ivo Piantanida for his help with fluorescence lifetime measurements.
Lord, M.S., Foss, M., Besenbacher, F., Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5 (2010), 66–78, 10.1016/j.nantod.2010.01.001.
Valero Vidal, C., Igual Muñoz, A., Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochim. Acta 55 (2010), 8445–8452, 10.1016/j.electacta.2010.07.028.
Latour, R.A., Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf. B Biointerfaces, 191, 2020, 110992, 10.1016/j.colsurfb.2020.110992.
Barnthip, N., Parhi, P., Golas, A., Vogler, E.A., Volumetric interpretation of protein adsorption: kinetics of protein-adsorption competition from binary solution. Biomaterials 30 (2009), 6495–6513, 10.1016/j.biomaterials.2009.08.016.
Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M., Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8 (2009), 543–557, 10.1038/nmat2442.
Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 8 (2013), 772–781, 10.1038/nnano.2013.181.
Bender, S.A., Bumgardner, J.D., Roach, M.D., Bessho, K., Ong, J.L., Effect of protein on the dissolution of HA coatings. Biomaterial 21 (2000), 299–305, 10.1016/S0142-9612(99)00183-0.
Combes, C., Rey, C., Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterial 23 (2002), 2817–2823, 10.1016/S0142-9612(02)00073-X.
Ducheyne, P., Qiu, Q., Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterial 20 (1999), 2287–2303, 10.1016/S0142-9612(99)00181-7.
Jia, E., Protein adsorption on titanium substrates and its effects on platelet adhesion. Appl. Surf. Sci., 529, 2020, 146986, 10.1016/j.apsusc.2020.146986.
Schwartz, Z., Boyan, B.D., Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 56 (1994), 340–347, 10.1002/jcb.240560310.
Khang, G., Evolution of gradient concept for the application of regenerative medicine. Biosurf. Biotribol. 1 (2015), 202–213, 10.1016/j.bsbt.2015.08.004.
Farrugia, A., Albumin usage in clinical medicine: tradition or therapeutic?. Transfus. Med. Rev. 24 (2010), 53–63, 10.1016/j.tmrv.2009.09.005.
Weszl, M., Skaliczki, G., Cselenyák, A., Kiss, L., Major, T., Schandl, K., Bognár, E., Stadler, G., Peterbauer, A., Csönge, L., Lacza, Z., Freeze-dried human serum albumin improves the adherence and proliferation of mesenchymal stem cells on mineralized human bone allografts. J. Orthop. Res. 30 (2012), 489–496, 10.1002/jor.21527.
L. Tang, J.W. Eaton, Natural responses to unnatural materials: a molecular mechanism for foreign body reactions, Mol. Med. 5 (1999) 351–358.
Canal, C., Ginebra, M.P., Fibre-reinforced calcium phosphate cements: a review. J. Mech. Behav. Biomed. Mater. 4 (2011), 1658–1671, 10.1016/j.jmbbm.2011.06.023.
Keskar, M., Sabatini, C., Cheng, C., Swihart, M.T., Synthesis and characterization of silver nanoparticle-loaded amorphous calcium phosphate microspheres for dental applications. Nanoscale Adv. 1 (2019), 627–635, 10.1039/C8NA00281A.
Alvarez-Urena, P., Kim, J., Bhattacharyya, S., Ducheyne, P., 6.1 Bioactive Ceramics and Bioactive Ceramic Composite Based Scaffolds. Comprehensive Biomaterials II, 2017, Elsevier, 1–19, 10.1016/B978-0-12-803581-8.10136-5.
Eliaz, N., Metoki, N., Calcium phosphate bioceramics: a review of their history, structure, properties. Coat. Technol. Biomed.Appl., 10, 2017, 104.
Oktar, F.N., Hydroxyapatite–TiO2 composites. Mater. Lett. 60 (2006), 2207–2210, 10.1016/j.matlet.2005.12.099.
Joseph Nathanael, A., Mangalaraj, D., Chen, P.C., Ponpandian, N., Mechanical and photocatalytic properties of hydroxyapatite/titania nanocomposites prepared by combined high gravity and hydrothermal process. Compos. Sci. Technol. 70 (2010), 419–426, 10.1016/j.compscitech.2009.11.009.
Pushpakanth, S., Srinivasan, B., Sreedhar, B., Sastry, T.P., An in situ approach to prepare nanorods of titania–hydroxyapatite (TiO2–HAp) nanocomposite by microwave hydrothermal technique. Mater. Chem. Phys. 107 (2008), 492–498, 10.1016/j.matchemphys.2007.08.029.
Vemulapalli, A.K., Penmetsa, R.M.R., Nallu, R., Siriyala, R., HAp/TiO 2 nanocomposites: influence of TiO 2 on microstructure and mechanical properties. J. Compos. Mater. 54 (2020), 765–772, 10.1177/0021998319868517.
Salarian, M., Xu, W.Z., Wang, Z., Sham, T.-K., Charpentier, P.A., Hydroxyapatite–TiO 2-based nanocomposites synthesized in supercritical CO 2 for bone tissue engineering: physical and mechanical properties. ACS Appl. Mater. Interfaces 6 (2014), 16918–16931, 10.1021/am5044888.
Nath, S., Tripathi, R., Basu, B., Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater. Sci. Eng. C 29 (2009), 97–107, 10.1016/j.msec.2008.05.019.
I. Erceg, A. Selmani, A. Gajović, B. Radatović, S. Šegota, M. Ćurlin, V. Strasser, J. Kontrec, D. Kralj, N. Maltar-Strmečki, R. Barbir, B. Pem, I. Vinković Vrček, M. Dutour Sikirić, Precipitation at room temperature as a fast and versatile method for calcium phosphate/TiO2 nanocomposites synthesis, Nanomaterials. 11 (2021) 1523. 10.3390/nano11061523.
Jurgelane, I., Buss, A., Putnina, M., Loca, D., Locs, J., Effect of sintering temperature on sorption properties and compressive strength of calcium phosphate ceramic granules. Mater. Lett., 282, 2021, 128858, 10.1016/j.matlet.2020.128858.
Mavropoulos, E., Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf. B 83 (2011), 1–9, 10.1016/j.colsurfb.2010.10.025.
Swain, S.K., Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl. Surf. Sci. 5 (2013), 99–103, 10.1016/j.apsusc.2013.09.027.
Wassell, D.T.H., Hall, R.C., Embery, G., Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials 16 (1995), 697–702, 10.1016/0142-9612(95)99697-K.
Thakur, S., Hashim, N., Neogi, S., Ray, A.K., Size-dependent adsorption and conformational changes induced in bovine serum albumin (BSA) on exposure to titanium dioxide (TiO 2) nanoparticles. Sep. Sci. Technol. 52 (2017), 421–434, 10.1080/01496395.2016.1257639.
Xu, Z., Grassian, V.H., Bovine serum albumin adsorption on TiO 2 nanoparticle surfaces: effects of pH and coadsorption of phosphate on protein-surface interactions and protein structure. J. Phys. Chem. C 121 (2017), 21763–21771, 10.1021/acs.jpcc.7b07525.
Wang, J., Guo, X., Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater., 390, 2020, 122156, 10.1016/j.jhazmat.2020.122156.
D'Elia, N.L., Gravina, N., Ruso, J.M., Marco-Brown, J.L., Sieben, J.M., Messina, P.V., Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: effect of surface reactivity and interfacial hydration. J. Colloid Interface Sci. 494 (2017), 345–354, 10.1016/j.jcis.2017.01.047.
Zeng, H., Chittur, K.K., Lacefield, W.R., Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials 20 (1999), 377–384, 10.1016/S0142-9612(98)00184-7.
S.V. Dorozhkin, Calcium Orthophosphates. Application in Nature, Biology and Medicine (2012).
I. Erceg, A. Selmani, A. Gajović, I. Panžić, D. Iveković, F. Faraguna, S. Šegota, M. Ćurlin, V. Strasser, J. Kontrec, D. Kralj, N. Maltar Strmečki, M. Dutour Sikirić, Calcium phosphate formation on TiO2 nanomaterials of different dimensionality, Colloids Surf. A: Physicochem. Eng. Asp. 593 (2020) 124615, https://doi.org/10.1016/j.colsurfa.2020.124615.
Han, X., Kuang, Q., Jin, M., Xie, Z., Zheng, L., Synthesis of titania nanosheets with a high percentage of exposed (0 0 1) facets and related photocatalytic properties. J. Am. Chem. Soc. 131 (2009), 3152–3153, 10.1021/ja8092373.
Sofianou, M.-V., Trapalis, C., Psycharis, V., Boukos, N., Vaimakis, T., Yu, J., Wang, W., Study of TiO2 anatase nano and microstructures with dominant 001 facets for NO oxidation. Environ. Sci. Pollut. Res. 19 (2012), 3719–3726, 10.1007/s11356-012-0747-x.
Selmani, A., Špadina, M., Plodinec, M., Delač Marion, I., Willinger, M.G., Lützenkirchen, J., Gafney, H.D., Redel, E., An experimental and theoretical approach to understanding the surface properties of one-dimensional TiO 2 nanomaterials. J. Phys. Chem. C 119 (2015), 19729–19742, 10.1021/acs.jpcc.5b02027.
Chamary, S., Hautcoeur, D., Hornez, J.-C., Leriche, A., Cambier, F., Bio-inspired hydroxyapatite dual core-shell structure for bone substitutes. J. Eur. Ceram. Soc. 37 (2017), 5321–5327, 10.1016/j.jeurceramsoc.2017.05.043.
Hao, C., Xu, G., Feng, Y., Lu, L., Sun, W., Sun, R., Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 184 (2017), 191–197, 10.1016/j.saa.2017.05.004.
Mariam, J., Dongre, P.M., Kothari, D.C., Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 21 (2011), 2193–2199, 10.1007/s10895-011-0922-3.
Lakowicz, J.R., Principles of Fluorescence Spectroscopy. third ed., 2006, Springer.
Lu, Z., Huangfu, C., Wang, Y., Ge, H., Yao, Y., Zou, P., Wang, G., He, H., Rao, H., Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features. Mater. Sci. Eng. C 52 (2015), 251–258, 10.1016/j.msec.2015.03.047.
Rao, H., Lu, Z., Liu, W., Wang, Y., Ge, H., Zou, P., He, H., The adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and its adsorption kinetics: the process of BMP-2 adsorption. Surf. Interface Anal. 48 (2016), 1048–1055, 10.1002/sia.6021.
Sasidharan, N.P., Chandran, P., Sudheer Khan, S., Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics. Colloids Surf. B Biointerfaces 102 (2013), 195–201, 10.1016/j.colsurfb.2012.07.034.
Ho, Y.S., McKay, G., Pseudo-second order model for sorption processes. Process Biochem. 34 (1999), 451–465, 10.1016/S0032-9592(98)00112-5.
Weber, W.J., Morris, J.C., Kinetics of adsorption on carbon from solution. J. Sanit. Engrg. Div. 89 (1963), 31–59, 10.1061/JSEDAI.0000430.
Inyinbor, A.A., Adekola, F.A., Olatunji, G.A., Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 15 (2016), 14–27, 10.1016/j.wri.2016.06.001.
Delgado, N., Capparelli, A., Navarro, A., Marino, D., Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. J. Environ. Manage. 236 (2019), 301–308, 10.1016/j.jenvman.2019.01.116.
El-Khaiary, M.I., Malash, G.F., Ho, Y.-S., On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems. Desalination 257 (2010), 93–101, 10.1016/j.desal.2010.02.041.
Moussout, H., Ahlafi, H., Aazza, M., Maghat, H., Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 4 (2018), 244–254, 10.1016/j.kijoms.2018.04.001.
Lin, J., Wang, L., Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China. 3 (2009), 320–324, 10.1007/s11783-009-0030-7.
Kathiravan, A., Renganathan, R., Interaction of colloidal TiO2 with bovine serum albumin: a fluorescence quenching study. Colloids Surf. A Physicochem. Eng. Asp. 324 (2008), 176–180, 10.1016/j.colsurfa.2008.04.017.
W. Zhang, Q. Zhang, F. Wang, L. Yuan, Z. Xu, F. Jiang, Y. Liu, Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods, Luminiscence 30 (2014) 397–404, https://doi.org/10.1002/bio.2748.
Benesi, H.A., Hildebrand, J.H., A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71 (1949), 2703–2707, 10.1021/ja01176a030.
Sun, T., Liu, L., Sun, Y., Tan, C., Yao, F., Liang, X., Wang, Y., Yang, Y., Hu, X., Fan, J., Synthesis and characterization of TiO2 nanoparticles: applications in research on the interaction of colloidal TiO2 with human serum albumin by fluorescence spectroscopy. Anal. Sci. 28 (2012), 491–496, 10.2116/analsci.28.491.
Sikirić, M.D., Füredi-Milhofer, H., The influence of surface active molecules on the crystallization of biominerals in solution. Adv. Colloid Interface Sci. 128–130 (2006), 135–158, 10.1016/j.cis.2006.11.022.
Bronze-Uhle, E., Costa, B.C., Ximenes, V.F., Lisboa-Filho, P.N., Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl. 10 (2016), 11–21, 10.2147/NSA.S117018.
Marucco, A., Fenoglio, I., Turci, F., Fubini, B., Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. J. Phys.: Conf. Ser.J. Phys., 429, 2013, 012014, 10.1088/1742-6596/429/1/012014.
Rial, R., Tichnell, B., Latimer, B., Liu, Z., Messina, P.V., Ruso, J.M., Structural and kinetic visualization of the protein corona on bioceramic nanoparticles. Langmuir 34 (2018), 2471–2480, 10.1021/acs.langmuir.7b03573.
Kopac, T., Bozgeyik, K., Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surf. B Biointerfaces 76 (2010), 265–271, 10.1016/j.colsurfb.2009.11.002.
Ranjan, S., Dasgupta, N., Srivastava, P., Ramalingam, C., A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J. Photochem. Photobiol. B Biol. 161 (2016), 472–481, 10.1016/j.jphotobiol.2016.06.015.
Hu, Q., Wang, Q., Feng, C., Zhang, Z., Lei, Z., Shimizu, K., Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J. Mol. Liq. 254 (2018), 20–25, 10.1016/j.molliq.2018.01.073.
McKay, G., Ho, Y.S., Ng, J.C.Y., Biosorption of copper from waste waters: a review. Sep. Purif. Methods 28 (1999), 87–125, 10.1080/03602549909351645.
Feng, B., Chen, J., Zhang, X., Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials 23 (2002), 2499–2507, 10.1016/S0142-9612(01)00384-2.
Lima, É.C., Adebayo, M.A., Machado, F.M., Kinetic and Equilibrium Models of Adsorption. Bergmann, C.P., Machado, F.M., (eds.) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, 2015, Springer International Publishing, Cham, 33–69, 10.1007/978-3-319-18875-1_3.
Witek-Krowiak, A., Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process. Chem. Eng. J. 192 (2012), 13–20, 10.1016/j.cej.2012.03.075.
Sarkar, M., Acharya, P.K., Bhattacharya, B., Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. J. Colloid Interface Sci. 266 (2003), 28–32, 10.1016/S0021-9797(03)00551-4.
Karmaker, S., Sen, T., Saha, T.K., Adsorption of reactive yellow 145 onto chitosan in aqueous solution: kinetic modeling and thermodynamic analysis. Polym. Bull. 72 (2015), 1879–1897, 10.1007/s00289-015-1378-4.
Wang, Y.-Q., Zhang, H.-M., Wang, R.-H., Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods. Colloids Surf. B Biointerfaces 65 (2008), 190–196, 10.1016/j.colsurfb.2008.04.001.
Pandit, S., Kundu, S., Fluorescence quenching and related interactions among globular proteins (BSA and lysozyme) in presence of titanium dioxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 628, 2021, 127253, 10.1016/j.colsurfa.2021.127253.
Sułkowska, A., Interaction of drugs with bovine and human serum albumin. J. Molecular Struct. 614 (2002), 227–232, 10.1016/S0022-2860(02)00256-9.
Manivel, A., Anandan, S., Spectral interaction between silica coated silver nanoparticles and serum albumins. Colloids and Surfaces A: Physicochemical and Engineering Aspects 395 (2012), 38–45, 10.1016/j.colsurfa.2011.12.001.
Wu, Y., Zhang, H., Wang, Y., Conformational and functional changes of bovine serum albumin induced by TiO2 nanoparticles binding. J. Mol. Liq. 243 (2017), 358–368, 10.1016/j.molliq.2017.07.116.
Ansari, A., Sachar, S., Garje, S.S., Synthesis of bare and surface modified TiO 2 nanoparticles via a single source precursor and insights into their interactions with serum albumin. New J. Chem. 42 (2018), 13358–13366, 10.1039/C8NJ02253D.
Naik, P.N., Chimatadar, S.A., Nandibewoor, S.T., Study on the interaction between antibacterial drug and bovine serum albumin: a spectroscopic approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73 (2009), 841–845, 10.1016/j.saa.2009.04.018.
Starosta, R., Santos, F.C., de Almeida, R.F.M., Human and bovine serum albumin time-resolved fluorescence: tryptophan and tyrosine contributions, effect of DMSO and rotational diffusion. J. Mol. Struct., 1221, 2020, 128805, 10.1016/j.molstruc.2020.128805.
Tayeh, N., Rungassamy, T., Albani, J.R., Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J. Pharm. Biomed. Anal. 50 (2009), 107–116, 10.1016/j.jpba.2009.03.015.
Sharma, S., Takkella, D., Kumar, P., Gavvala, K., Spectroscopic analysis to identify the binding site for Rifampicin on Bovine Serum Albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 283, 2022, 121721, 10.1016/j.saa.2022.121721.
J. Tian, Y. Zhao, X. Liu, S. Zhao, A steady-state and time-resolved fluorescence, circular dichroism study on the binding of myricetin to bovine serum albumin, Luminescence (2009) n/a-n/a. 10.1002/bio.1124.