Electron paramagnetic spectroscopy; Ion-substituted hydroxyapatite; Magnesium; Saline; Simulated body fluid; Chemical Engineering (all); Materials Science (all); Condensed Matter Physics; Inorganic Chemistry; General Materials Science; General Chemical Engineering
Abstract :
[en] To assess the application potential of novel biomaterials, their behaviour in model media and upon sterilization should be investigated, as well as the stability related to their storage condi-tions. Such data are lacking for Mg-substituted HAP (Mg-HAP). Therefore, the changes in the local structure of non-substituted and Mg-HAP after irradiation and immersion in corrected simulated fluid and saline solution for 28 days were followed by electron paramagnetic resonance (EPR) spectroscopy for the first time. To better understand the stability of radical species induced by steriliza-tion, EPR spectra of samples kept for 2 h at temperatures up to 373 K were recorded to provide an insight into the stability of the sample storage conditions by the accelerated aging method. Samples were characterized by PXRD, FTIR, SEM, EDS, AAS and TGA. Results confirmed that irradiation does not induce changes in the composition or the structure of any of the investigated materials. Fading or the complete disappearance of radical signals in the EPR spectra after immersion in both media was accompanied by the disappearance of other phases formed as a minor byproduct in the synthesis of substituted HAP, as confirmed by PXRD and FTIR analysis. Obtained results confirm the great potential of Mg-HAPs for biomedical applications, although closer attention should be given to the processes related to sample storage stability at different temperatures.
Disciplines :
Chemistry
Author, co-author :
Vidotto, Monica; Laboratory for Electron Spin Spectroscopy, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Grego, Timor; Department of Occupational Safety and Health, Fire and Radiation Protection Ruđer Bošković Institute, Zagreb, Croatia ; Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
Petrović, Božana ; Laboratory for Atomic Physics, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Belgrade University, Vinča, Belgrade, Serbia
Somers, Nicolas ; Université de Liège - ULiège ; FR CERAMATHS Département Matériaux et Procédés, Université Polytechnique Hauts-de-France (UPHF), Maubeuge, France
Antonić Jelić, Tatjana ; Laboratory for Synthesis of New Materials, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Kralj, Damir; Laboratory for Precipitation Processes, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Matijaković Mlinarić, Nives ; Laboratory for Precipitation Processes, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Leriche, Anne ; FR CERAMATHS Département Matériaux et Procédés, Université Polytechnique Hauts-de-France (UPHF), Maubeuge, France
Dutour Sikirić, Maja ; Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Erceg, Ina; Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Maltar-Strmečki, Nadica ; Laboratory for Electron Spin Spectroscopy, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
Language :
English
Title :
A Comparative EPR Study of Non-Substituted and Mg-Substituted Hydroxyapatite Behaviour in Model Media and during Accelerated Ageing
HRZZ - Croatian Science Foundation Cogito Foundation Ministry of Science, Education and Sports
Funding text :
Acknowledgments: D.K. and N.M.M. gratefully acknowledges financial support from the Croatian Science Foundation Grant HRZZ-IP-2013-11-5055.Funding: This study was supported by the Croatian Science Foundation, Grant HRZZ-IP-2018-01-1493, Ministry of Science and Education, Croatian-Serbian bilateral project “Ion substituted hydroxyapatites for bone tissue engineering” and COGITO project “Systematic investigation of adsorption of proteins on calcium phosphate based bioceramics for bone tissue engineering”.
Dorozhkin, S.V. Calcium Orthophosphates in Nature, Biology and Medicine. Materials 2009, 2, 399–498. https://doi.org/10.3390/ma2020399.
Omema, U.; Khalid, H.; Chaudhry, A.A. Magnesium-substituted hydroxyapatite. In Handbook of Ionic Substituted Hydroxyapatites; Woodhead Publishing Series in Biomaterials; Khan, A.S., Chaudhry, A.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 197–216; ISBN 978-0-08-102834-6. https://doi.org/10.1016/B978-0-08-102834-6.00008-2.
Gibson, I.R. Natural and Synthetic Hydroxyapatites. In Biomaterials Sciences. Materials in Medicine, 4th ed.; Wagner, W.R., Sa-kiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 307–317; ISBN 978-0-12-816137-1. https://doi.org/10.1016/B978-0-12-816137-1.00017-9.
Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563. https://doi.org/10.3390/ceramics4040039.
Kono, T.; Sakae, T.; Nakada, H.; Kaneda, T.; Okada, H. Confusion between Carbonate Apatite and Biological Apatite (Car-bonated Hydroxyapatite) in Bone and Teeth. Minerals 2022, 12, 170. https://doi.org/10.3390/min12020170.
Bigi, A.; Boanini, E.; Gazzano, M. Ion substitution in biological and synthetic apatites. In Biomineralization and Biomaterials; Apa-ricio, C., Ginebra, M.-P., Eds.; Woodhead Publishing: Boston, UK, 2016; pp. 235–266; ISBN 978-1-78242-338-6. https://doi.org/10.1016/B978-1-78242-338-6.00008-9.
Cacciotti, I. Cationic and Anionic Substitutions in Hydroxyapatite, In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–211; ISBN 978-3-319-12460-5. https://doi.org/10.1007/978-3-319-12460-5_7.
Bosch-Rué, È.; Díez-Tercero, L.; Rodriguez-Gonzalez, R.; Pérez, R.A. Multiple Ion Scaffold-Based Delivery Platform for Potential Application in Early Stages of Bone Regeneration. Materials 2021, 14, 7676. https://doi.org/10.3390/ma14247676.
Sethmann, I.; Luft, C.; Kleebe, H.-J. Development of Phosphatized Calcium Carbonate Biominerals as Bioactive Bone Graft Substitute Materials, Part I: Incorporation of Magnesium and Strontium Ions. JFB 2018, 9, 69. https://doi.org/10.3390/jfb9040069.
Cacciotti, I. Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite per-formances. Int. J. Appl. Ceram. Technol. 2019, 16, 1864–1884. https://doi.org/10.1111/ijac.13229.
LeGeros, R.Z. Calcium phosphates in oral biology and medicine. Monogr. Oral Sci. 1991, 15, 1–201. https://doi.org/10.1159/isbn.978-3-318-04021-0.
Lin, S.H.; Zhang, W.J.; Jiang, X.Q. Applications of Bioactive Ions in Bone Regeneration. Chin. J. Dent. Res. 2019, 22, 93–104. https://doi.org/10.3290/j.cjdr.a42513.
Landi, E.; Tampieri, A.; Mattioli-Belmonte, M.; Celotti, G.; Sandri, M.; Gigante, A.; Fava, P.; Biagini, G. Biomimetic Mg-and Mg,CO3-substituted hydroxyapatites: Synthesis characterization and in vitro behaviour. J. Eur. Ceram. Soc. 2006, 26, 2593–2601. https://doi.org/10.1016/j.jeurceramsoc.2005.06.040.
Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. https://doi.org/10.3390/nu5083022.
Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316.
Murzakhanov, F.; Mamin, G.V.; Orlinskii, S.; Goldberg, M.; Petrakova, N.V.; Fedotov, A.Y.; Grishin, P.; Gafurov, M.R.; Komlev, V.S. Study of Electron-Nuclear Interactions in Doped Calcium Phosphates by Various Pulsed EPR Spectroscopy Techniques. ACS Omega 2021, 6, 25338–25349. https://doi.org/10.1021/acsomega.1c03238.
Andrés, N.C.; D’Elía, N.L.; Ruso, J.M.; Campelo, A.E.; Massheimer, V.L.; Messina, P. V Manipulation of Mg(2+)-Ca(2+) Switch on the Development of Bone Mimetic Hydroxyapatite. ACS Appl. Mater. Interfaces 2017, 9, 15698–15710. https://doi.org/10.1021/acsami.7b02241.
Mocanu, A.; Cadar, O.; Frangopol, P.T.; Petean, I.; Tomoaia, G.; Paltinean, G.-A.; Racz, C.P.; Horovitz, O.; Tomoaia-Cotisel, M. Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: In vitro experiments and the-oretical modelling study. R. Soc. Open Sci. 2022, 8, 201785. https://doi.org/10.1098/rsos.201785.
Singh, R.; Singh, D.; Singh, A. Radiation sterilization of tissue allografts: A review. World J. Radiol. 2016, 8, 355–369. https://doi.org/10.4329/wjr.v8.i4.355.
Matkovic, I.; Maltar-Strmecki, N.; Babic-Ivancic, V.; Sikiric, M.D.; Noethig-Laslo, V. Characterisation of beta-tricalcium phos-phate-based bone substitute materials by electron paramagnetic resonance spectroscopy. Radiat. Phys. Chem. 2012, 81, 1621– 1628. https://doi.org/10.1016/j.radphyschem.2012.04.012.
Rahman, N.; Khan, R.; Badshah, S. Effect of x-rays and gamma radiations on the bone mechanical properties: Literature review. Cell Tissue Bank. 2018, 19, 457–472. https://doi.org/10.1007/s10561-018-9736-8.
Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.-J. The Influence of X-ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation. Int. J. Artif. Organs 2005, 28, 66–73. https://doi.org/10.1177/039139880502800111.
Bystrova, A.V.; Dekhtyar, Y.D.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics 2015, 475, 135–147. https://doi.org/10.1080/00150193.2015.995580.
Rokhmistrov, D.V.; Nikolov, O.T.; Gorobchenko, O.A.; Loza, K.I. Study of structure of calcium phosphate materials by means of electron spin resonance. Appl. Radiat. Isot. 2012, 70, 2621–2626. https://doi.org/10.1016/j.apradiso.2012.07.020.
Fouad, H.; Elleithy, R.; Alothman, O.Y. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hy-droxyapatite Nano Composite for Biomedical Applications: Effect of Accelerated Ageing. J. Mater. Sci. Technol. 2013, 29, 573– 581. https://doi.org/10.1016/j.jmst.2013.03.020.
Desrosiers, M.; Schauer, D.A. Electron paramagnetic resonance (EPR) biodosimetry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2001, 184, 219–228. https://doi.org/10.1016/S0168-583X(01)00614-0.
Chamary, S.; Hautcoeur, D.; Hornez, J.-C.; Leriche, A.; Cambier, F. Bio-inspired hydroxyapatite dual core-shell structure for bone substitutes. J. Eur. Ceram. Soc. 2017, 37, 5321–5327. https://doi.org/10.1016/j.jeurceramsoc.2017.05.043.
Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017.
Majer, M.; Roguljić, M.; Knežević, Ž.; Starodumov, A.; Ferenček, D.; Brigljević, V.; Mihaljević, B. Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute—Geant4 simulation and measurements. Appl. Radiat. Isot. 2019, 154, 108824. https://doi.org/10.1016/j.apradiso.2019.108824.
Morse, P.D., II. Eprware USer Manual, V2.41; Scinetific Softwatre Services: Bloomington, IL, USA, 1990.
Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. https://doi.org/10.1002/jbm.10280.
Cacciotti, I.; Bianco, A.; Lombardi, M.; Montanaro, L. Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 2009, 29, 2969–2978. https://doi.org/10.1016/j.jeurceramsoc.2009.04.038.
Kannan, S.; Lemos, I.A.F.; Rocha, J.H.G.; Ferreira, J.M.F. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios. J. Solid State Chem. 2005, 178, 3190–3196. https://doi.org/10.1016/j.jssc.2005.08.003.
Stipniece, L.; Salma-Ancane, K.; Borodajenko, N.; Sokolova, M.; Jakovlevs, D.; Berzina-Cimdina, L. Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram. Int. 2014, 40, 3261–3267. https://doi.org/10.1016/j.cera-mint.2013.09.110.
Buljan Meić, I.; Kontrec, J.; Domazet Jurašin, D.; Njegić Džakula, B.; Štajner, L.; Lyons, D.M.; Dutour Sikirić, M.; Kralj, D. Comparative Study of Calcium Carbonates and Calcium Phosphates Precipitation in Model Systems Mimicking the Inorganic Envi-ronment for Biomineralization. Cryst. Growth Des. 2017, 17, 1103–1117. https://doi.org/10.1021/acs.cgd.6b01501.
Farzadi, A.; Bakhshi, F.; Solati-Hashjin, M.; Asadi-Eydivand, M.; Osman, N.A. abu Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceram. Int. 2014, 40, 6021–6029. https://doi.org/10.1016/j.cera-mint.2013.11.051.
Suchanek, W.L.; Byrappa, K.; Shuk, P.; Riman, R.E.; Janas, V.F.; TenHuisen, K.S. Preparation of magnesium-substituted hydrox-yapatite powders by the mechanochemical–hydrothermal method. Biomaterials 2004, 25, 4647–4657. https://doi.org/10.1016/j.bi-omaterials.2003.12.008.
Sprio, S.; Tampieri, A.; Landi, E.; Sandri, M.; Martorana, S.; Celotti, G.; Logroscino, G. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater. Sci. Eng. C 2008, 28, 179–187. https://doi.org/10.1016/j.msec.2006.11.009.
International Atomic Energy Agency. Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control a Code of Practice; International Atomic Energy Agency (IAEA): Vienna, Austria, 2007; ISBN 978-92-0-109002-2.
Buljan Meić, I.; Kontrec, J.; Domazet Jurašin, D.; Selmani, A.; Njegić Džakula, B.; Maltar-Strmečki, N.; Lyons, D.M.; Plodinec, M.; Čeh, M.; Gajović, A.; et al. How similar are amorphous calcium carbonate and calcium phosphate? A comparative study of amorphous phases formation conditions. Crystengcomm 2018, 20, 35–50. https://doi.org/10.1039/C7CE01693J.
Baran, N.P.; Vorona, I.P.; Ishchenko, S.S.; Nosenko, V.V.; Zatovskii, I.V.; Gorodilova, N.A.; Povarchuk, V.Y. NO32− and CO2−cen-ters in synthetic hydroxyapatite: Features of the formation under γ-and UV-irradiations. Phys. Solid State 2011, 53, 1891. https://doi.org/10.1134/S106378341109006X.
Fattibene, P.; Callens, F. EPR dosimetry with tooth enamel: A review. Appl. Radiat. Isot. 2010, 68, 2033–2116. https://doi.org/10.1016/j.apradiso.2010.05.016.
Ikeya, M. New Applications of Electron Spin Resonance; World Scientific: Singapore, 1993; ISBN 978-981-02-1199-8.
Van Doorslaer, S.; Moens, P.; Callens, F.; Matthys, P.; Verbeeck, R. 31P and1H powder ENDOR study of ozonide radicals in carbonated apatites, synthesized from aqueous solutions. Appl. Magn. Reson. 1996, 10, 87–102. https://doi.org/10.1007/BF03163101.
Glerup, J.; Weihe, H. Magnetic susceptibility and EPR spectra of μ-cyano-bis[pentaamminechromium(III)] perchlorate. Acta Chem. Scand. 1991, 45, 444–448. https://doi.org/10.3891/ACTA.CHEM.SCAND.45-0444.
Nosenko, V.V.; Vorona, I.P.; Ishchenko, S.S.; Baran, N.P.; Zatovsky, I.V.; Gorodilova, N.A.; Povarchuk, V.Y. Effect of pre-an-nealing on NO32- centers in synthetic hydroxyapatite. Radiat. Meas. 2012, 47, 970–973. https://doi.org/10.1016/j.rad-meas.2012.08.008.
Kusrini, E.; Sontang, M. Characterization of X-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiat. Phys. Chem. 2012, 81, 118–125. https://doi.org/10.1016/j.radphyschem.2011.10.006.
Ren, F.; Leng, Y.; Xin, R.; Ge, X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010, 6, 2787–2796. https://doi.org/10.1016/j.actbio.2009.12.044.
Cox, S.C.; Jamshidi, P.; Grover, L.M.; Mallick, K.K. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater. Sci. Eng. C 2014, 35, 106–114. https://doi.org/10.1016/j.msec.2013.10.015.
Rudko, V.V.; Baran, N.P.; Vorona, I.P.; Ishchenko, S.S.; Okulov, S.M.; Chumakova, L.S. Structure and properties of CO2–centers in biological and synthetic hydroxyapatite. IOP Conf. Ser. Mater. Sci. Eng. 2010, 15, 12032. https://doi.org/10.1088/1757-899x/15/1/012032.
Park, J. Hydroxyapatite. In Bioceramics; Springer: New York, NY, USA, 2008; pp. 177–197; ISBN 978-0-387-09545-5. https://doi.org/10.1007/978-0-387-09545-5_9.
Lazić, S.; Zec, S.; Miljević, N.; Milonjić, S. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim. Acta 2001, 374, 13–22. https://doi.org/10.1016/S0040-6031(01)00453-1.
Bertoni, E.; Bigi, A.; Cojazzi, G.; Gandolfi, M.; Panzavolta, S.; Roveri, N. Nanocrystals of magnesium and fluoride substituted hydroxyapatite. J. Inorg. Biochem. 1998, 72, 29–35. https://doi.org/10.1016/S0162-0134(98)10058-2.
Zyman, Z.; Tkachenko, M.; Epple, M.; Polyakov, M.; Naboka, M. Magnesium-substituted hydroxyapatite ceramics. Materwis-senschaft Werksttechnik 2006, 37, 474–477. https://doi.org/10.1002/mawe.200600022.
Suciu, O.; Ioanovici, T.; Bereteu, L. Mechanical Properties of Hydroxyapatite Doped with Magnesium, Used in Bone Implants. Appl. Mech. Mater. 2013, 430, 222–229. https://doi.org/10.4028/www.scientific.net/AMM.430.222.
Vorona, I.P.; Ishchenko, S.S.; Baran, N.P. The effect of thermal treatment on radiation-induced EPR signals in tooth enamel. Radiat. Meas. 2005, 39, 137–141. https://doi.org/10.1016/j.radmeas.2004.03.020.
Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. https://doi.org/10.1016/j.actbio.2009.12.041.