Bioceramics; Direct Ink Writing; Doping; Osmotic drying; Sintering; β-TCP; Bone regeneration; Bone repair; Co-doped; Direct ink writing; Macroporous; Repair applications; Tri-calcium phosphates; Tricalcium phosphate bioceramics; Ceramics and Composites; Materials Chemistry
Abstract :
[en] β-tricalcium phosphate (β-TCP, β-Ca3(PO4)2) is one of the most attractive biomaterials for bone regeneration and β-TCP macroporous scaffolds are very promising for both cell proliferation and mechanical support. The Additive Manufacturing (AM) process called Direct Ink Writing (DIW), based on the extrusion of a concentrated ceramic slurry, is particularly adapted to resolve the main drawbacks associated with conventional shaping of ceramic scaffolds. In this work, co-doped β-TCP powders were synthetized and used to print macroporous scaffolds by DIW. Doped β-TCP powders have been proved to exhibit higher thermal stability, densification and mechanical properties compared to undoped β-TCP. Two co-doped compositions were produced via the aqueous precipitation technique combining magnesium, strontium, silver and copper cations: Mg-Sr (2.0–2.0 mol%) and Mg-Sr-Ag-Cu (2.0–2.0–0.1–0.1 mol%). DIW slurries were optimized with undoped and co-doped β-TCP with the use of a dispersant and a carboxymethylcellulose and polyethyleneimine mixture to obtain aqueous slurries filled with 42 vol% of powder. Complete rheological characterizations were realized to assess the suitability of the β-TCP slurries for the DIW process (shear-thinning and thixotropic behaviour). The whole processing chain including printing, osmotic drying (PEG 10000) and sintering (1100 °C, 3 h) was optimized to successfully print co-doped β-TCP macroporous scaffolds. Characterizations after sintering showed a reduction of macropores and microcracks using co-doped β-TCP powders as well as improved compressive strengths and densities compared to undoped β-TCP. A significant enhancement of compressive strength values was obtained compared to literature data.
Disciplines :
Chemistry
Author, co-author :
Somers, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; CERAMATHS-Department Materials and Processing, Université Polytechnique Hauts-de-France, Valenciennes, France ; INSA Hauts-de-France, Campus Mont Houy, Valenciennes Cedex 9, France
Jean, Florian ; CERAMATHS-Department Materials and Processing, Université Polytechnique Hauts-de-France, Valenciennes, France ; INSA Hauts-de-France, Campus Mont Houy, Valenciennes Cedex 9, France
Lasgorceix, Marie; CERAMATHS-Department Materials and Processing, Université Polytechnique Hauts-de-France, Valenciennes, France ; INSA Hauts-de-France, Campus Mont Houy, Valenciennes Cedex 9, France
Preux, Nicolas; Belgian Ceramic Research Centre, Mons, Belgium
Delmotte, Cathy; Belgian Ceramic Research Centre, Mons, Belgium
Boilet, Laurent ; Belgian Ceramic Research Centre, Mons, Belgium
Petit, Fabrice; Belgian Ceramic Research Centre, Mons, Belgium
Leriche, Anne; CERAMATHS-Department Materials and Processing, Université Polytechnique Hauts-de-France, Valenciennes, France ; INSA Hauts-de-France, Campus Mont Houy, Valenciennes Cedex 9, France
Language :
English
Title :
Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applications
H2020 - 764935 - DOC-3D-PRINTING - Development Of Ceramics 3D-Printing, Additive Manufacturing
Funders :
EU - European Union
Funding text :
The authors are grateful to the “DOC 3D Printing” project for financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764935 .
Kwong, F.N.K., Harris, M.B., Recent developments in the biology of fracture repair. J. Am. Acad. Orthop. Surg. 16 (2008), 619–625, 10.5435/00124635-200811000-00001.
Vandana, K., Chandra GNR, B., Periodontal osseous defects: a review. CODS J. Dent. 9 (2017), 22–29, 10.5005/jp-journals-10063-0028.
Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31 (2013), 594–605 https://doi.org/10.1016/j.tibtech.2013.06. 005 594.
Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P., Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2 (2006), 457–466.
Laskus, A., Kolmas, J., Ionic substitutions in non-apatitic calcium phosphates. Int. J. Mol. Sci. 18 (2017), 1–22, 10.3390/ijms18122542.
Gaasbeek, R.D. a, Toonen, H.G., Van Heerwaarden, R.J., Buma, P., Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26 (2005), 6713–6719.
Bohner, M., Resorbable biomaterials as bone graft substitutes. Mater. Today 13 (2010), 24–30.
Habraken, W., Habibovic, P., Epple, M., Bohner, M., Calcium phosphates in biomedical applications: Materials for the future?. Mater. Today 19 (2016), 69–87, 10.1016/j.mattod.2015.10.008.
Bohner, M., Galea, L., Doebelin, N., Calcium phosphate bone graft substitutes: failures and hopes. J. Eur. Ceram. Soc. 32 (2012), 2663–2671.
Banerjee, S.S., Bandyopadhyay, A., Bose, S., Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery. Adv. Eng. Mater. 12 (2010), 148–155, 10.1002/adem.200980072.
T.N. Aldelaimi, The Use of Resorbable Tricalcium Phosphate Material ( β TCP) in Treatment of Surgical Bony Defects after Minor Surgical, (2016).
Bose, S., Tarafder, S., Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 8 (2012), 1401–1421.
Eliaz, N., Metoki, N., Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10, 2017.
Somers, N., Lasgorceix, M., Overview of Substitutes for Bone Replacement: Natural and Synthetic Products. 2021, Elsevier Ltd.
M. Bohner, Bone Substitute Materials, in: Ref. Modul. Biomed. Res., 2014: pp. 1–15.
Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., Grigolo, B., Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng. C 78 (2017), 1246–1262, 10.1016/j.msec.2017.05.017.
Alaribe, F.N., Manoto, S., Motaung, S.C.K.M., Scaffolds from biomaterials advantages and limitations in bone and tissue engineering. Biol. (Bratisl. ) 71 (2016), 353–366.
Yang, H., Yang, S., Chi, X., Evans, J.R.G., Fine Ceramic Lattices Prepared by Extrusion Freeforming. 2006, InterScience 83–83.
Diaz-Rodriguez, P., Sánchez, M., Landin, M., Drug-loaded biomimetic ceramics for tissue engineering. Pharmaceutics 10 (2018), 1–20.
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., Shu, W., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3 (2018), 278–314, 10.1016/j.bioactmat.2017.10.001.
P.K. Chu, X. Liu, Biomaterials fabrication and processing: Handbook, 2008.
B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G.A. Thouas, Q. Chen, Bone tissue engineering scaffolding: computer-aided scaffolding techniques, 2014. 〈https://doi.org/10.1007/s40204–014-0026–7〉.
Qu, H., Fu, H., Han, Z., Sun, Y., Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9 (2019), 26252–26262, 10.1039/c9ra05214c.
M. Descamps, T. Duhoo, F. Monchau, J. Lu, P. Hardouin, J.C. Hornez, A. Leriche, Manufacture of macroporous  -tricalcium phosphate bioceramics, 28 (2008) 149–157. https://doi.org/10.1016/j.jeurceramsoc.2007.05.025.
Bose, S., Vahabzadeh, S., Bandyopadhyay, A., Bone tissue engineering using 3D printing. Mater. Today 16 (2013), 496–504, 10.1016/j.mattod.2013.11.017.
Zocca, A., Colombo, P., Gomes, C.M., Jens, G., Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98 (2015), 1983–2001, 10.1111/jace.13700.
Chartier, T., Dupas, C., Lasgorceix, M., Brie, J., Champion, E., Delhote, N., Chaput, C., Additive manufacturing to produce complex 3D ceramic parts. J. Ceram. Sci. Technol. 6 (2015), 95–104.
Lin, K., Sheikh, R., Romanazzo, S., Roohani, I., 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials, 12, 2019, 10.3390/ma12172660.
Ferrage, L., Bertrand, G., Lenormand, P., Grossin, D., Ben-Nissan, B., A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. J. Aust. Ceram. Soc. 53 (2017), 11–20, 10.1007/s41779-016-0003-9.
Wen, Y., Xun, S., Haoye, M., Baichuan, S., Peng, C., Xuejian, L., Kaihong, Z., Xuan, Y., Jiang, P., Shibi, L., 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater. Sci. 5 (2017), 1690–1698, 10.1039/c7bm00315c.
Maazouz, Y., Montufar, E.B., Guillem-Marti, J., Fleps, I., Öhman, C., Persson, C., Ginebra, M.P., Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J. Mater. Chem. B 2 (2014), 5378–5386, 10.1039/c4tb00438h.
Peng, E., Zhang, D., Ding, J., Ceramic robocasting: recent achievements, potential, and future developments. Adv. Mater., 1802404, 2018, 1802404.
Zhao, S., Xiao, W., Rahaman, M.N., O'Brien, D., Sonny Bal, B., Seitz-Sampson, J.W., Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. Int. J. Appl. Ceram. Technol., 2016, 1–11.
Tabard, L., Garnier, V., PrudHomme, E., Courtial, E., Meille, S., Adrien, J., Jorand, Y., Gremillard, L., Robocasting of highly porous ceramics scaffolds with hierarchized porosity. Addit. Manuf., 38, 2021, 101776.
Miranda, P., Pajares, A., Saiz, E., Tomsia, A.P., Guiberteau, F., Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J. Biomed. Mater. Res. - Part A 85 (2008), 218–227.
Miranda, P., Pajares, A., Saiz, E., Tomsia, A.P., Guiberteau, F., Fracture Modes under Uniaxial Compression in Hydroxyapatite Scaffolds Fabricated by Robocasting. 2007, InterScience.
Franco, E.S.J., Hunger, P., Launey, M.E., Tomsia, A.P., Direct-write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 23 (2010), 1–7.
Ramirez Caballero, S.S., Saiz, E., Montembault, A., Tadier, S., Maire, E., David, L., Delair, T., Grémillard, L., 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization. J. Mater. Sci. Mater. Med, 30, 2019, 10.1007/s10856-018-6201-y.
Michna, S., Wu, W., Lewis, J. a, Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26 (2005), 5632–5639.
Hudon, P., Jung, I.-H., Critical evaluation and thermodynamic optimization of the CaO-P2O5 system. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 46 (2015), 494–522, 10.1007/s11663-014-0193-x.
Bohner, M., Le Gars Santoni, B., Döbelin, N., β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 113 (2020), 23–41, 10.1016/j.actbio.2020.06.022.
Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. a, Greil, P., Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26 (2005), 3379–3384, 10.1016/j.biomaterials.2004.09.017.
Champion, E., Sintering of calcium phosphate bioceramics. Acta Biomater. 9 (2013), 5855–5875.
Descamps, M., Hornez, J.C., Leriche, A., Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J. Eur. Ceram. Soc. 27 (2007), 2401–2406, 10.1016/j.jeurceramsoc.2006.09.005.
Somers, N., Jean, F., Lasgorceix, M., Curto, H., Urruth, G., Thuault, A., Petit, F., Leriche, A., Influence of dopants on thermal stability and densification of β-tricalcium phosphate powders. Open Ceram., 7, 2021, 100168, 10.1016/j.oceram.2021.100168.
Renaudin, G., Jallot, E., Nedelec, J.M., Effect of strontium substitution on the composition and microstructure of sol-gel derived calcium phosphates. J. Sol. Gel Sci. Technol. 51 (2009), 287–294, 10.1007/s10971-008-1854-5.
Tarafder, S., Balla, S., Davies, V.K., Bandyopadhyay, N.M., A., and Bose, Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med 13 (2012), 512–520, 10.1002/term.555.
Frasnelli, M., Sglavo, V.M., Effect of Mg2+ doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomater. 33 (2016), 283–289, 10.1016/j.actbio.2016.01.015.
L. Obadia, Synthèse et caractérisation des phosphates de calcium d′intérêt biologique: Structure et propriétés de phosphates tricalciques β dopés au sodium, Formation d′apatites non stoechiométriques par hydrolyse de phosphate dicalcique dihydraté, (2004) 155.
Tarafder, S., Dernell, W.S., Bandyopadhyay, A., Bose, S., SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. J. Biomed. Mater. Res. Part B Appl. Biomater. 103 (2015), 679–690, 10.1002/jbm.b.33239.
Fadeeva, I.V., Gafurov, M.R., Kiiaeva, I.A., Orlinskii, S.B., Kuznetsova, L.M., Filippov, Y.Y., Fomin, A.S., Davydova, G.A., Selezneva, I.I., Barinov, S.M., Tricalcium Phosphate ceramics doped with silver, copper, zinc, and iron (III) ions in concentrations of less than 0.5 wt% for bone tissue regeneration. Bionanoscience 7 (2017), 434–438, 10.1007/s12668-016-0386-7.
Feng, P., Wei, P., Shuai, C., Peng, S., Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS One, 9, 2014.
Nan, B., Galindo-rosales, F.J., Ferreira, J.M.F., 3D printing vertically: direct ink writing free-standing pillar arrays. Mater. Today 35 (2020), 16–24.
Neto, A.S., Ferreira, J.M.F., Biphasic calcium phosphate scaffolds derived from hydrothermally synthesized powders. Lek. a Tech. 48 (2018), 77–83.
Richard, R.C., Oliveira, R.N., Soares, G.D. a, Thiré, R.M.S.M., Direct-write assembly of 3D scaffolds using colloidal calcium phosphates inks. Rev. Mater. 19 (2014), 61–67.
Trunec, M., Osmotic drying of gelcast bodies in liquid desiccant. J. Eur. Ceram. Soc. 31 (2011), 2519–2524.
Hammel, E.C., Campa, J.A., Armbrister, C.E., Scheiner, M.V., Okoli, O.I., Influence of osmotic drying with an aqueous poly (ethylene glycol) liquid desiccant on alumina objects gelcast with gelatin. Ceram. Int. 43 (2017), 16443–16450.
Chamary, S., Grenho, L., Helena, M., Bouchart, F., Jorge, F., Christophe, J.-C., Influence of a macroporous β -TCP structure on human mesenchymal stem cell proliferation and differentiation in vitro. Open Ceram., 7, 2021, 100141, 10.1016/j.oceram.2021.100141.
N. Vandecandelaere, Élaboration et caractérisation de biomatériaux osseux innovants à base d′apatites phospho-calciques dopées, Université de Toulouse, 2012.
Bazin, T., Magnaudeix, A., Mayet, R., Carles, P., Julien, I., Demourgues, A., Gaudon, M., Champion, E., Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram. Int. 47 (2021), 13644–13654, 10.1016/j.ceramint.2021.01.225.
H.V. Cummings, Physical and Biological Properties of Cobalt- and Copper-Doped Calcium Phosphates As Bone Substitute Materials, 2018.
Pate, K., Safier, P., Chemical metrology methods for CMP quality. Adv. Chem. Mech. Planar, 2016, 1–325.
Tang, W., Song, L., Li, D., Qiao, J., Zhao, T., Zhao, H., Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2. PLoS One 9 (2014), 1–19.
N. Doebelin R. Kleeberg. Comput. Prog. Profex: a Graph. Use Interface Rietveld refinement Program BGMN 2015 1573 1580.
Curto, H., Thuault, A., Jean, F., Violier, M., Dupont, V., Hornez, J.-C., Leriche, A., Coupling additive manufacturing and microwave sintering: a fast processing route of alumina ceramics. J. Eur. Ceram. Soc., 2019, 01.
Bae, C.J., Halloran, J.W., Integrally cored ceramic mold fabricated by ceramic stereolithography. Int. J. Appl. Ceram. Technol. 8 (2011), 1255–1262.
Farris, R.J., Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans. Soc. Rheol. 12:2 (1968), 281–301.
Greenwood, R., Luckham, P.F., Gregory, T., Minimising the viscosity of concentrated dispersions by using bimodal particle size distributions. Colloids Surf. A Physicochem. Eng. Asp. 144 (1998), 139–147.
Ryu, H.S., Youn, H.J., Sun Hong, K., Chang, B.S., Lee, C.K., Chung, S.S., An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23 (2002), 909–914 https://doi.org/0142-9612/02.
Sasidharan Pillai, R., Sglavo, V.M., Effect of MgO addition on solid state synthesis and thermal behavior of beta-tricalcium phosphate. Ceram. Int. 41 (2015), 2512–2518, 10.1016/j.ceramint.2014.10.073.
Frasnelli, M., Pedranz, A., Biesuz, M., Dirè, S., Sglavo, V.M., Flash sintering of Mg-doped tricalcium phosphate (TCP) nanopowders. J. Eur. Ceram. Soc. 39 (2019), 3883–3892, 10.1016/j.jeurceramsoc.2019.05.007.
Veljovic, D., Radovanovic, Z., Dindune, A., Palcevskis, E., Krumina, A., Petrovic, R., Janackovic, D., The influence of Sr and Mn incorporated ions on the properties of microwave single- and two-step sintered biphasic HAP/TCP bioceramics. J. Mater. Sci. 49 (2014), 6793–6802, 10.1007/s10853-014-8380-3.
Bose, S., Tarafder, S., Banerjee, S.S., Davies, N.M., Bandyopadhyay, A., Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2doped β-TCP. Bone 48 (2011), 1282–1290, 10.1016/j.bone.2011.03.685.
Lin, K., Chen, L., Qu, H., Lu, J., Chang, J., Improvement of mechanical properties of macroporous b -tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram. Int. 37 (2011), 2397–2403, 10.1016/j.ceramint.2011.03.079.
Hettich, G., Schierjott, R.A., Epple, M., Gbureck, U., Heinemann, S., Moza, H., Grupp, T.M., Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity. Materials, 12, 2019.
J. Koruza, A. Klein, Electroceramics XVII - The 2020 virtual conference experience at TU Darmstadt, 6 (2022) 1–5. https://doi.org/10.1016/j.oceram.2021.100114.
Ruscitti, A., Tapia, C., Rendtorff, N.M., A review on additive manufacturing of ceramic materials based on extrusion processes of clay pastes. Cerâmica, 66(380), 2020, 10.1590/0366-69132020663802918.