Debinding; Polyacrylates; Resin formulation; Stereolithography; Thermal degradation; Tricalcium phosphate; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Biomaterials; Materials Chemistry
Abstract :
[en] With the median age of the population steadily rising, the rate of bone disorders increases as well, making the need of bone implants more and more urgent in our society. However, manufacturing of synthetic bioimplants requires high flexibility of the process and materials with sufficient mechanical strength and biocompatible properties. This paper is devoted to the printing of β-tricalcium phosphate (β-TCP) by stereolithography. The suspensions or pastes containing the photosensitive-resin mixed with β-TCP powder were assessed for the following parameters: rheological behaviour, thermal degradation of photo-cured samples, quality of green and sintered parts. It appeared that the composition of the photo-sensitive resin influences the viscosity of the paste. However, no direct correlation could be drawn between the viscosity of the photo-sensitive resins and the viscosity of the whole paste. A hypothesis is that the chemical structure of the monomers composing the photo-sensitive resin also impacts the viscosity of the paste. A thermal debinding cycle was built from the thermogravimetric analysis of the photo-cured samples. The structure of the post printed (green) parts and final parts (parts after debinding and sintering) was evaluated. It appeared that the pastes with the lowest viscosity were the easiest to process, and that the green parts made with these pastes were the easiest to clean, reducing the number of defects in the sintered parts. Process optimisation was also assessed. Different light parameters were evaluated, and it appeared that reducing the light power during the printing improved the resolution as well as the quality of the sintered parts.
Disciplines :
Chemistry
Author, co-author :
Goutagny, Chloé; Belgian Ceramic Research Center (BCRC), Mons, Belgium
Hocquet, Stéphane; Belgian Ceramic Research Center (BCRC), Mons, Belgium
Hautcoeur, Dominique; Belgian Ceramic Research Center (BCRC), Mons, Belgium
Lasgorceix, Marie; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
Somers, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
Leriche, Anne; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
Language :
English
Title :
Development of calcium phosphate suspensions suitable for the stereolithography process
The author is grateful to the “Doc 3D printing” project for financial support. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764935.
Xing, Z., Liu, W., Chen, Y., Li, W., Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing. nov Ceram. Int. 44:16 (2018), 19939–19944, 10.1016/j.ceramint.2018.07.259.
Melchels, F.P.W., Feijen, J., Grijpma, D.W., A review on stereolithography and its applications in biomedical engineering. août Biomaterials 31:24 (2010), 6121–6130, 10.1016/j.biomaterials.2010.04.050.
Bose, S., Roy, M., Bandyopadhyay, A., Recent advances in bone tissue engineering scaffolds. oct Trends Biotechnol. 30:10 (2012), 546–554, 10.1016/j.tibtech.2012.07.005.
Rguiti-Constantin, E., Frittage, propriétés mécaniques et fonctionnalisation de biocéramiques mono et biphasique. 2011, Université de Valencienne et du Hainaut-Cambrésis.
R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, et J.P. Legeros, « Biphasic Calcium Phosphate Bioceramics: Preparation, Properties and Applications », Elsevier, vol. vol. 14, p. 201-209.
Schmidleithner, C., Malferrari, S., Palgrave, R., Bomze, D., Schwentenwein, M., Kalaskar, D.M., Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. jun Biomed. Mater., 14(4), 2019, 045018, 10.1088/1748-605X/ab279d.
Johansson, E., Lidström, O., Johansson, J., Lyckfeldt, O., Adolfsson, E., Influence of resin composition on the defect formation in alumina manufactured by stereolithography. févr Materials, 10(2), 2017, 138, 10.3390/ma10020138.
Admatec introduces bioresorbable ceramics from CAM Bioceramics. Admatec, 2020 consulté le déc. 17 https://admateceurope.com/news-item?id=89f1850704361acfa22bfcfd3b83be05.
Mingxian, Y., et al. Optimization of the tape casting process for development of high performance alumina ceramics. Elsevier Ceram. Int. 41 (2015), 14845–14853.
Bae, C.-J., Halloran, J.W., Influence of residual monomer on cracking in ceramics fabricated by stereolithograpy. Appl. Ceram. Technol. Ceram. Prod. Dev. Commer. 8 (2011), 1289–1295, 10.1111/j.1744-7402.2010.02578.x.
Pfaffinger, M., Hartmann, M., Schwentenwein, M., Stampfl, J., Stabilization of tricalcium phosphate slurries against sedimentation for stereolithographic additive manufacturing and influence on the final mechanical properties. Int. J. Appl. Ceram. Technol. 14:4 (2017), 499–506, 10.1111/ijac.12664.
Song, X., Chen, Y., Woo Lee, T., Wu, S., Cheng, L., Ceramic fabrication using Mask-Image-Projection-based Stereolithography integrated with tape-cating. J. Manuf. Process., 2015, 456–464.
Halloran, J.W., Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. juill Annu. Rev. Mater. Res. 46:1 (2016), 19–40, 10.1146/annurev-matsci-070115-031841.
Mitteramskogler, G., et al. Light Curing Strategies for Lithography-Based Additive Manufacturing of Customized Ceramics. sept, 2014, Elsevier, 10.1016/j.addma.2018.08.003.
Zürcher et, S., Graule, T., Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. mar J. Eur. Ceram. Soc. 25:6 (2005), 863–873, 10.1016/j.jeurceramsoc.2004.05.002.
Chartier, T., et al. Influence of irradiation parameters on the polymerization of ceramic reactive suspensions for stereolithography. déc J. Eur. Ceram. Soc. 37:15 (2017), 4431–4436, 10.1016/j.jeurceramsoc.2017.05.050.
Kowsari, K., et al. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf. 24 (déc. 2018), 627–638, 10.1016/j.addma.2018.10.037.
Lasgorceix, M., Mise en forme par microstéréolithographie et frittage de céramiques macro-micro-poreuses en hydroxyapatite silicatée et évaluation biologique. 2014, Université de Limoge, 10.13140/rg.2.1.1895.8484.
Chartier, T., et al. Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes. J. Am. Ceram. Soc., 2008, 10.1111/j.1551-2916.2008.02482.x ???-???, juin.
Schmidt, J., Colombo, P., Digital light processing of ceramic components from polysiloxanes. janv J. Eur. Ceram. Soc. 38:1 (2018), 57–66, 10.1016/j.jeurceramsoc.2017.07.033.
Kindernay, J., Blažková, A., Rudá, J., Jančovičová, V., Jakubı́ková, Z., Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. août J. Photochem. Photobiol. Chem. 151:1–3 (2002), 229–236, 10.1016/S1010-6030(02)00172-7.
Steyrer, B., Neubauer, P., Liska, R., Stampfl, J., Visible light photoinitiator for 3D-printing of tough methacrylate resins. déc Materials, 10(12), 2017, 1445, 10.3390/ma10121445.
Li, K., Zhao, Z., The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. avr Ceram. Int. 43:6 (2017), 4761–4767, 10.1016/j.ceramint.2016.11.143.
Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R., Polymers for 3D printing and customized additive manufacturing. août Chem. Rev. 117:15 (2017), 10212–10290, 10.1021/acs.chemrev.7b00074.
Descamps, M., Hornez, J.C., Leriche, A., Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. janv J. Eur. Ceram. Soc. 27:6 (2007), 2401–2406, 10.1016/j.jeurceramsoc.2006.09.005.
Somers, N., Jean, F., Lasgorceix, M., Curto, H., Urruth, G., Thuault, A., Petit, F., Leriche, A., et al. Influence of dopants on thermal stability and densification of β-tricalcium phosphate powders. Open Ceram. 7 (2021), 1–13, 10.1016/j.oceram.2021.100168.
Ebrahimi, M., Botelho, M., Biphasic calcium phosphates (BCP) of hydroxyapatite (HA) and tricalcium phosphate (TCP) as bone substitutes: importance of physicochemical characterizations in biomaterials studies. févr Data Brief 10 (2017), 93–97, 10.1016/j.dib.2016.11.080.
Bitterlich, B., Lutz, C., Roosen, A., 6th Rheological Characterization of Water-Based Slurries for the Tape Casting Process, 28, 2002, Ceramics International, 675–683.
Chartier, T., Badev, A., Abouliatim, Y., Lebaudy, P., Lecamp, L., Stereolithography process: influence of the rheology of silica suspensions and of the medium on polymerization kinetics – cured depth and width. juill J. Eur. Ceram. Soc. 32:8 (2012), 1625–1634, 10.1016/j.jeurceramsoc.2012.01.010.
Mueller, S., Llewellin, E.W., Mader, H.M., « the rheology of suspensions of solid particles ». Art. no 2116, avr Proc. R. Soc. Math. Phys. Eng. Sci., 466(2116), 2010, 10.1098/rspa.2009.0445.
Tomeckova, V., Teyssandier, F., Norton, S.J., Love, B.J., Halloran, J.W., Photopolymerization of acrylate suspensions. nov J. Photochem. Photobiol. Chem. 247 (2012), 74–81, 10.1016/j.jphotochem.2012.08.008.
Andrzejewska, E., Photopolymerization kinetics of multifunctional monomers. mai Prog. Polym. Sci. 26:4 (2001), 605–665, 10.1016/S0079-6700(01)00004-1.
Decker, C., Polymérisation Sous Rayonnement UV. 2000, 19.
Badev, A., et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. juill J. Photochem. Photobiol. Chem. 222:1 (2011), 117–122, 10.1016/j.jphotochem.2011.05.010.
Jiang, S., et al. Photopolymerization of multifunctional methacrylic monomers: synthesis, properties and effects of the functional groups. J. Polym. Mater., 2016, 11.
Md Ani, S., Muchtar, A., Muhamad, N., Ghani, J.A., Binder removal via a two-stage debinding process for ceramic injection molding parts. Art. no 2, mars Ceram. Int., 40(2), 2014, 10.1016/j.ceramint.2013.10.032.