Bioceramics; Coprecipitation synthesis; Doping; Magnesium; Microwave sintering; Strontium; β-TCP; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Biomaterials; Materials Chemistry
Abstract :
[en] In this work, β-tricalcium phosphate (β-TCP) is doped with Mg2+ and Sr2+ in order to postpone the problematic β-TCP → α-TCP transition occurring from 1125 °C. Indeed, this phase transition occurs with a large lattice expansion during sintering causing microcracks and a reduced shrinkage leading to poor mechanical properties of ceramic parts. The substitution of calcium by cations like Mg2+ and Sr2+ allows to increase the temperature corresponding to β→α-TCP transition and therefore to increase the sintering temperature and achieve higher densification level. Three doping rates for each dopant individually (2.25, 4.50 and 9.00 mol%) and two co-doped compositions (2.00 mol% and 4.00 mol% of Mg2+ and Sr2+ simultaneously) were tested. Thermal and dilatometric analyses were used to evaluate the effects of Mg2+ and Sr2+ doping on the thermal stability of β-TCP. It has been shown that all doping, except the 2.25 mol% Sr-TCP, postpone the β→α transition. These results were confirmed after conventional and microwave sintering. Indeed, X-ray diffraction analyses of sintered pellets showed that the only phase present is β-TCP up to 1300 °C in all compositions except for the 2.25 mol% Sr-TCP with both sintering ways. Moreover, a higher densification rate is observed with the presence of dopants compared to undoped β-TCP according to the microstructures and relative densities close to 100%. Finally, the duration of microwave sintering is almost sixteen times shorter compared to conventional sintering allowing rapid densification with similar final relative densities and microstructures with finer grains.
Disciplines :
Chemistry
Author, co-author :
Somers, Nicolas ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France
Jean, Florian ; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France
Lasgorceix, Marie; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France ; INSA Hauts-de-France, Campus Mont Houy, Valenciennes, France
Curto, Hugo ; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France ; Sairem SAS, Décines-Charpieu, France
Urruth, Giovanni ; Marion Technologies, Parc Technologique Delta Sud, Verniolle, France
Thuault, Anthony ; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France
Petit, Fabrice; Belgian Ceramic Research Centre – Member of EMRA, Mons B, Belgium ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France
Leriche, Anne; Univ. Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France ; GIS TECHCERA – Groupement Intérêt Scientifique Transfrontalier sur Les Céramiques (BE -FR), France
Language :
English
Title :
Influence of dopants on thermal stability and densification of β-tricalcium phosphate powders
The authors are grateful to the “DOC 3D Printing ” project for financial support. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764935 .The authors are also grateful to the JECS Trust for funding the visit of Nicolas Somers to the Winter Workshop organized by The American Ceramic Society from 24th to 28th January 2020 at Daytona Beach, Florida (USA) (Contract 2018 186–16).
Bohner, M., Bone Substitute Materials. third ed., 2014, Elsevier, 10.1016/B978-0-12-801238-3.00224-5.
Destainville, A., Champion, E., Laborde, E., Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80 (2003), 269–277.
Bose, S., Vahabzadeh, S., Bandyopadhyay, A., Bone tissue engineering using 3D printing. Mater. Today 16 (2013), 496–504, 10.1016/j.mattod.2013.11.017.
Eliaz, N., Metoki, N., Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10, 2017, 10.3390/ma10040334.
Bohner, M., Santoni, B.L.G., Döbelin, N., β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 113 (2020), 23–41, 10.1016/j.actbio.2020.06.022.
Raynaud, S., Champion, E., Bernache-assollant, D., Laval, J., Determination of calcium/phosphorus atomic ratio of apatites using X-ray diffractometry. J. Am. Ceram. Soc. 84 (2001), 359–366, 10.1111/j.1151-2916.2001.tb00663.x.
Habraken, W., Habibovic, P., Epple, M., Bohner, M., Calcium phosphates in biomedical applications: materials for the future?. Mater. Today 19 (2016), 69–87, 10.1016/j.mattod.2015.10.008.
Dorozhkin, S.V., Calcium orthophosphates (CaPO4): occurrence and properties. Am. J. Roentgenol., 160, 1993, 1359, 10.1007/s40204-015-0045-z.
Devoe, K., Banerjee, S., Roy, M., Bandyopadhyay, A., Bose, S., Resorbable tricalcium phosphates for bone tissue engineering: influence of Sro doping. J. Am. Ceram. Soc. 95 (2012), 3095–3102, 10.1111/j.1551-2916.2012.05356.x.
Aldelaimi, T.N., The Use of Resorbable Tricalcium Phosphate Material (β TCP) in Treatment of Surgical Bony Defects after Minor Surgical. 2016.
Bohner, M., Resorbable biomaterials as bone graft substitutes, Mater. Today Off. 13 (2010), 24–30, 10.1016/S1369-7021(10)70014-6.
Isaac, J., Hornez, J., Jian, D., Descamps, M., Hardouin, P., Magne, D., β‐TCP microporosity decreases the viability and osteoblast differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. 86A (2008), 386–393, 10.1002/jbm.a.31644.
Bose, S., Tarafder, S., Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8 (2012), 1401–1421, 10.1016/j.actbio.2011.11.017.
Frasnelli, M., Sglavo, V.M., Effect of Mg2+doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomater. 33 (2016), 283–289, 10.1016/j.actbio.2016.01.015.
Ryu, H.S., Youn, H.J., Sun Hong, K., Chang, B.S., Lee, C.K., Chung, S.S., An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23 (2002), 909–914, 10.1016/S0142-9612(01)00201-0.
Wong, W.Y., Mohd Noor, A.F., Othman, R., Sintering of beta-tricalcium phosphate scaffold using polyurethane template. Key Eng. Mater. 694 (2016), 94–98 https://doi.org/10.4028/www.scientific.net/kem.694.94.
Ghosh, R., Sarkar, R., Synthesis and characterization of sintered beta-tricalcium phosphate: a comparative study on the effect of preparation route. Mater. Sci. Eng. C 67 (2016), 345–352, 10.1016/j.msec.2016.05.029.
Feng, P., Wei, P., Shuai, C., Peng, S., Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PloS One, 9, 2014, 10.1371/journal.pone.0087755.
Sayer, M., Stratilatov, a.D., Reid, J., Calderin, L., Stott, M.J., Yin, X., MacKenzie, M., Smith, T.J.N., Hendry, J.a., Langstaff, S.D., Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials 24 (2003), 369–382, 10.1016/S0142-9612(02)00327-7.
Descamps, M., Hornez, J.C., Leriche, a., Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J. Eur. Ceram. Soc. 27 (2007), 2401–2406, 10.1016/j.jeurceramsoc.2006.09.005.
Hudon, P., Jung, I.H., Critical evaluation and thermodynamic optimization of the CaO-P2O5 system. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 46 (2015), 494–522, 10.1007/s11663-014-0193-x.
Champion, E., Sintering of calcium phosphate bioceramics. Acta Biomater. 9 (2013), 5855–5875, 10.1016/j.actbio.2012.11.029.
Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F.a., Greil, P., Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26 (2005), 3379–3384, 10.1016/j.biomaterials.2004.09.017.
Carrodeguas, R.G., De Aza, A.H., Turrillas, X., Pena, P., De Aza, S., New approach to the β→α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications. J. Am. Ceram. Soc. 91 (2008), 1281–1286, 10.1111/j.1551-2916.2008.02294.x.
Torres, P.M.C., Abrantes, J.C.C., Kaushal, A., Pina, S., Döbelin, N., Bohner, M., Ferreira, J.M.F., Journal of the European Ceramic Society Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic ␣ ↔  -tricalcium phosphate phase transformations 36 (2016), 817–827.
Matsumoto, N., Yoshida, K., Hashimoto, K., Toda, Y., Thermal stability of β-tricalcium phosphate doped with monovalent metal ions. Mater. Res. Bull. 44 (2009), 1889–1894, 10.1016/j.materresbull.2009.05.012.
Carrodeguas, R.G., De Aza, S., α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 7 (2011), 3536–3546, 10.1016/j.actbio.2011.06.019.
Lasgorceix, M., Ott, C., Boilet, L., Hocquet, S., Leriche, A., Asadian, M., De Geyter, N., Declercq, H., Lardot, V., Cambier, F., Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment. Mater. Sci. Eng. C 95 (2019), 371–380, 10.1016/j.msec.2018.03.004.
Tian, Y., Lu, T., He, F., Xu, Y., Shi, H., Shi, X., Zuo, F., Wu, S., Ye, J., Β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids Surf. B Biointerfaces 167 (2018), 318–327, 10.1016/j.colsurfb.2018.04.028.
Acchar, W., Ramalho, E.G., Effect of MnO2 addition on sintering behavior of tricalcium phosphate: preliminary results. Mater. Sci. Eng. C 28 (2008), 248–252, 10.1016/j.msec.2006.12.011.
Banerjee, S.S., Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S., Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater. 6 (2010), 4167–4174, 10.1016/j.actbio.2010.05.012.
Tarafder, S., Dernell, W.S., Bandyopadhyay, A., Bose, S., SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J. Biomed. Mater. Res. B Appl. Biomater. 103 (2015), 679–690, 10.1002/jbm.b.33239.
Renaudin, G., Jallot, E., Nedelec, J.M., Effect of strontium substitution on the composition and microstructure of sol-gel derived calcium phosphates. J. Sol. Gel Sci. Technol. 51 (2009), 287–294, 10.1007/s10971-008-1854-5.
dos Santos, E.A., Anselme, K., de Almeida Soares, G.D., Kuznetsov, A., de Sena, L.Á., Moreira, M.P., Dentzer, J., Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater. Sci. Eng. C 61 (2016), 736–743, 10.1016/j.msec.2016.01.004.
Chanda, A., Dasgupta, S., Bose, S., Bandyopadhyay, A., Microwave sintering of calcium phosphate ceramics. Mater. Sci. Eng. C 29 (2009), 1144–1149, 10.1016/j.msec.2008.09.008.
Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J., Lee, J.H., Chang, B.S., Lee, D.H., Lee, C.K., Chung, S.S., Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials 25 (2004), 393–401, 10.1016/S0142-9612(03)00538-6.
Kai, K.C., Machado, C.a.V.a., Genova, L.A., Marchi, J., Influence of Zn and Mg doping on the sintering behavior and phase transformation of tricalcium phosphate based ceramics. Mater. Sci. Forum 805 (2014), 706–711 https://doi.org/10.4028/www.scientific.net/MSF.805.706.
Obadia, L., Deniard, P., Alonso, B., Rouillon, T., Jobic, S., Guicheux, J., Julien, M., Massiot, D., Bujoli, B., Bouler, J.M., Effect of sodium doping in β-tricalcium phosphate on its structure and properties. Chem. Mater. 18 (2006), 1425–1433, 10.1021/cm052135f.
Prem Ananth, K., Shanmugam, S., Jose, S.P., Joseph Nathanael, a., Oh, T.H., Mangalaraj, D., Ballamurugan, A.M., Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application. J. Asian Ceram. Soc. 3 (2015), 317–324, 10.1016/j.jascer.2015.06.004.
Gomes, S., Vichery, C., Descamps, S., Martinez, H., Kaur, A., Jacobs, A., Nedelec, J.M., Renaudin, G., Cu-doping of calcium phosphate bioceramics: from mechanism to the control of cytotoxicity. Acta Biomater. 65 (2018), 462–474, 10.1016/j.actbio.2017.10.028.
Bioactive, A., Bone, G., Ferreira, M.M., Brito, A.F., Brazete, D., Pereira, C., Carrilho, E., Abrantes, A.M., Pires, A.S., Aguiar, M.J., Carvalho, L., Botelho, M.F., Ferreira, J.M.F., Doping β -TCP as a Strategy for Enhancing the Regenerative Potential of Composite Experimental Study in Rats. 2019, 10.3390/ma12010004.
Li, G., Zhang, N., Zhao, S., Zhang, K., Li, X., Jing, A., Liu, X., Zhang, T., Fe-doped brushite bone cements with antibacterial property. Mater. Lett. 215 (2018), 27–30, 10.1016/j.matlet.2017.12.054.
Fadeeva, I.V., Gafurov, M.R., Kiiaeva, I.A., Orlinskii, S.B., Kuznetsova, L.M., Filippov, Y.Y., Fomin, A.S., Davydova, G.A., Selezneva, I.I., Barinov, S.M., Tricalcium phosphate ceramics doped with silver, copper, zinc, and iron (III) ions in concentrations of less than 0.5 wt.% for bone tissue regeneration. Bionanoscience 7 (2017), 434–438, 10.1007/s12668-016-0386-7.
Qiu, Z.Y., Li, G., Zhang, Y.Q., Liu, J., Hu, W., Ma, J., Zhang, S.M., Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomed. Mater., 7, 2012, 10.1088/1748-6041/7/4/045009.
Sasidharan Pillai, R., Sglavo, V.M., Effect of MgO addition on solid state synthesis and thermal behavior of beta-tricalcium phosphate. Ceram. Int. 41 (2015), 2512–2518, 10.1016/j.ceramint.2014.10.073.
Wei, X., Akinc, M., Crystal structure analysis of Si- and Zn-codoped tricalcium phosphate by neutron powder diffraction. J. Am. Ceram. Soc. 90 (2007), 2709–2715, 10.1111/j.1551-2916.2007.01764.x.
Bose, S., Tarafder, S., Banerjee, S.S., Davies, N.M., Bandyopadhyay, A., Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2doped β-TCP. Bone 48 (2011), 1282–1290, 10.1016/j.bone.2011.03.685.
Fielding, G.a., Bandyopadhyay, A., Bose, S., Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28 (2012), 113–122, 10.1016/j.dental.2011.09.010.
Renaudin, G., Gomes, S., Nedelec, J.M., First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study. Materials 10 (2017), 1–22, 10.3390/ma10010092.
Torres, P.M.C., Vieira, S.I., Cerqueira, a.R., Pina, S., Da Cruz Silva, O.a.B., Abrantes, J.C.C., Ferreira, J.M.F., Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136 (2014), 57–66, 10.1016/j.jinorgbio.2014.03.013.
Yoshida, K., Hyuga, H., Kondo, N., Kita, H., Sasaki, M., Mitamura, M., Hashimoto, K., Toda, Y., Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for β-tricalcium phosphate. J. Am. Ceram. Soc. 89 (2006), 688–690, 10.1111/j.1551-2916.2005.00727.x.
Curran, D.J., Fleming, T.J., Towler, M.R., Hampshire, S., Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J. Mech. Behav. Biomed. Mater. 4 (2011), 2063–2073, 10.1016/j.jmbbm.2011.07.005.
Zhang, F., Lin, K., Chang, J., Lu, J., Ning, C., Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J. Eur. Ceram. Soc. 28 (2008), 539–545, 10.1016/j.jeurceramsoc.2007.07.012.
Boilet, L., Descamps, M., Rguiti, E., Tricoteaux, A., Lu, J., Petit, F., Lardot, V., Cambier, F., Leriche, A., Processing and properties of transparent hydroxyapatite and β tricalcium phosphate obtained by HIP process. Ceram. Int. 39 (2013), 283–288, 10.1016/j.ceramint.2012.06.023.
Tarafder, S., S. Balla, V.K., Davies, N.M., Bandyopadhyay, A., Bose, Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 13 (2012), 512–520, 10.1002/term.
Leriche, A., Savary, E., Thuault, A., Hornez, J.-C., Descamps, M., Marinel, S., Comparison of conventional and microwave sintering of bioceramics. Adv. Process. Manuf. Technol. Nanostructured Multifunct. Mater., 2015, 23–32, 10.1002/9781119040354.ch3.
Casas-Luna, M., Tan, H., Tkachenko, S., Salamon, D., Montufar, E.B., Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering. J. Eur. Ceram. Soc. 39 (2019), 4366–4374, 10.1016/j.jeurceramsoc.2019.05.055.
Curto, H., Thuault, A., Jean, F., Violier, M., Dupont, V., Hornez, J.-C., Leriche, A., Coupling additive manufacturing and microwave sintering: a fast processing route of alumina ceramics. J. Eur. Ceram. Soc., 2019, 1, 10.1016/j.jeurceramsoc.2019.11.009.
Martin, Trunec, Effect of grain size on mechanical properties of full-dense Pb(Zr,Ti)O 3 ceramics. Jpn. J. Appl. Phys. 49 (2010), 1–8, 10.1143/JJAP.49.09MD13.
Thuault, A., Savary, E., Hornez, J.C., Moreau, G., Descamps, M., Marinel, S., Leriche, A., Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. J. Eur. Ceram. Soc. 34 (2014), 1865–1871, 10.1016/j.jeurceramsoc.2013.12.035.
Dasgupta, S., Tarafder, S., Bandyopadhyay, A., Bose, S., Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Mater. Sci. Eng. C 33 (2013), 2846–2854, 10.1016/j.msec.2013.03.004.
Savary, E., Thuault, A., Hornez, J.-C., Descamps, M., Marinel, S., Leriche, A., Frittage micro-ondes en cavité monomode de biocéramiques. MATEC Web Conf, 7, 2013, 04017, 10.1051/matecconf/20130704017.
Kriegsmann, G.A., Thermal runaway in microwave heated ceramics: a one-dimensional model. J. Appl. Phys. 71 (1992), 1960–1966, 10.1063/1.351191.
Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31 (2013), 594–605, 10.1016/j.tibtech.2013.06.005.
Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Pina, S., Torres, P.M.C., Ferreira, J.M.F., Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater. 6 (2010), 571–576, 10.1016/j.actbio.2009.08.009.
Banerjee, S.S., Bandyopadhyay, A., Bose, S., Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery. Adv. Eng. Mater. 12 (2010), 148–155, 10.1002/adem.200980072.
Veljovic, D., Radovanovic, Z., Dindune, A., Palcevskis, E., Krumina, A., Petrovic, R., Janackovic, D., The influence of Sr and Mn incorporated ions on the properties of microwave single- and two-step sintered biphasic HAP/TCP bioceramics. J. Mater. Sci. 49 (2014), 6793–6802, 10.1007/s10853-014-8380-3.
Ke, D., Bose, S., Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties. Mater. Sci. Eng. C 78 (2017), 398–404, 10.1016/j.msec.2017.03.167.
Chadha, R.K., Singh, K.L., Sharma, C., Singh, A.P., Naithani, V., Effect of microwave and conventional processing techniques on mechanical properties of Strontium substituted hydroxyapatite. Ceram. Int. 46 (2020), 1091–1098, 10.1016/j.ceramint.2019.09.076.
Matsunaga, K., Kubota, T., Toyoura, K., Nakamura, A., First-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 23 (2015), 329–337, 10.1016/j.actbio.2015.05.014.
Bracci, B., Torricelli, P., Panzavolta, S., Boanini, E., Giardino, R., Bigi, a., Effect of Mg2+, Sr2+, and Mn2+on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J. Inorg. Biochem. 103 (2009), 1666–1674, 10.1016/j.jinorgbio.2009.09.009.
Chamary, S., Influence de l ’ architecture macroporeuse en phosphate de calcium sur le comportement cellulaire in vitro To cite this version : HAL Id : tel-01822768. 2018, Université de Valenciennes et du Hainaut-Cambrésis.
Thuault, A., Marinel, S., Savary, E., Heuguet, R., Saunier, S., Goeuriot, D., Agrawal, D., Processing of reaction-bonded B4C–SiC composites in a single-mode microwave cavity. Ceram. Int. 39 (2013), 1215–1219, 10.1016/J.CERAMINT.2012.07.047.
Doebelin, N., Kleeberg, R., Computer Programs Profex : a Graphical User Interface for the Rietveld Refinement Program BGMN. 2015, 1573–1580, 10.1107/S1600576715014685.
Abercrombie, M., Estimation of nuclear population from microtome sections. Anat. Rec. 94 (1946), 239–247.
Boanini, E., Gazzano, M., Nervi, C., Chierotti, M.R., Rubini, K., Gobetto, R., Bigi, A., Strontium and zinc substitution in β-tricalcium phosphate: an X-ray diffraction, solid state NMR and ATR-FTIR study. J. Funct. Biomater., 10, 2019, 10.3390/jfb10020020.
Le Gars Santoni, B., Niggli, L., Sblendorio, G.A., Alexander, D.T.L., Stahli, C., Bowen, P., Dobelin, N., Bohner, M., Chemically pure β-tricalcium phosphate powders: evidence of two crystal structures. J. Eur. Ceram. Soc. 41 (2021), 1683–1694, 10.1016/j.jeurceramsoc.2020.09.055.
Mortier, A., Lemaitre, J., Rouxhet, P.G., Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim. Acta 143 (1989), 265–282, 10.1016/0040-6031(89)85065-8.
Cacciotti, I., Bianco, A., High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram. Int. 37 (2011), 127–137, 10.1016/j.ceramint.2010.08.023.