Planets and satellites: atmospheres; Planets and satellites: aurorae; Planets and satellites: individual: Jupiter; Angular resolution; Atacama large millimeter/sub-millimeter arrays; Complexification; Counterrotation; Direct measurement; Energetic electron precipitation; Equatorial jets; Tropospheric winds; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.EP; Physics - Atmospheric and Oceanic Physics; Physics - Space Physics
Abstract :
[en] Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m s-1 around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been discovered with velocities of 1-2 km s-1. There is no such direct measurement in the stratosphere of the planet. Aims. In this Letter, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiter's stratosphere. Methods. We use the Atacama Large Millimeter/submillimeter Array's very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines. Results. We detect, for the first time, equatorial zonal jets that reside at 1 mbar, that is, above the altitudes where Jupiter's quasi-quadrennial oscillation occurs. Most noticeably, we find 300-400 m s-1 nonzonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counterrotation and lie several hundred kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds. Conclusions. We directly detect, for the first time, strong winds in Jupiter's stratosphere. They are zonal at low-to-mid latitudes and nonzonal at polar latitudes. The wind system found at polar latitudes may help increase the efficiency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Cavalie, T.; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France ; LESIA, Observatoire de Paris, PSL Research University, Meudon, France
Benmahi, Bilal ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France
Hue, V.; Southwest Research Institute, San Antonio, United States
Moreno, R.; LESIA, Observatoire de Paris, PSL Research University, Meudon, France
Lellouch, E.; LESIA, Observatoire de Paris, PSL Research University, Meudon, France
Fouchet, T. ; LESIA, Observatoire de Paris, PSL Research University, Meudon, France
Hartogh, P.; Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Rezac, L. ; Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Greathouse, T.K.; Southwest Research Institute, San Antonio, United States
Gladstone, G.R. ; Southwest Research Institute, San Antonio, United States
Sinclair, J.A.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Dobrijevic, M. ; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France
Billebaud, F.; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France
Jarchow, C.; Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
CNES - Centre National d'Études Spatiales INSU - Institut National des Sciences de l'Univers
Funding text :
Acknowledgements. The authors thank P. Gratier for helping implement the MCMC method, and R. Johnson and T. Stallard for providing them with their infrared ionospheric auroral wind velocities. T. C. acknowledges funding from CNES and the Programme National de Planétologie (PNP) of CNRS/INSU. This Letter makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.01235.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.
Commentary :
7 pages and 3 figures (+ 5 pages and 5 figures for the appendix).
Published in A&A 647, L8
Ingersoll, A. P., Beebe, R. F., Collins, S. A., et al. 1979, Nature, 280, 773
Ingersoll, A. P., Dowling, T. E., Gierasch, P. J., et al. 2004, in Dynamics of Jupiter's Atmosphere, eds. F. Bagenal, T. E. Dowling, & W. B. McKinnon, 1, 105
Johnson, R. E., Stallard, T. S., Melin, H., Nichols, J. D., & Cowley, S. W. H. 2017, J. Geophys. Res., 122, 7599
Kaspi, Y., Galanti, E., Hubbard, W. B., et al. 2018, Nature, 555, 223
Kaspi, Y., Galanti, E., Showman, A. P., et al. 2020, Space Sci. Rev., 216, 84
Lellouch, E., Goldstein, J. J., Bougher, S. W., Paubert, G., & Rosenqvist, J. 1991, ApJ, 383, 401
Lellouch, E., Paubert, G., Moreno, R., et al. 1995, Nature, 373, 592
Lellouch, E., Gurwell, M. A., Moreno, R., et al. 2019, Nat. Astron., 3, 614
Li, X., & Read, P. L. 2000, Planet. Space Sci., 48, 637
Limaye, S. S., Revercomb, H. E., Sromovsky, L. A., et al. 1982, J. Atmos. Sci., 39, 1413
Majeed, T., Bougher, S. W., Ridley, A. J., et al. 2016, J. Geophys. Res., 121, 4647
Marcus, P. S., Tollefson, J., Wong, M. H., & Pater, I. D. 2019, Icarus, 324, 198
Medvedev, A. S., Sethunadh, J., & Hartogh, P. 2013, Icarus, 225, 228
Moreno, R., Marten, A., Matthews, H. E., & Biraud, Y. 2003, Planet. Space Sci., 51, 591
Orton, G. S., Friedson, A. J., Caldwell, J., et al. 1991, Science, 252, 537
Orton, G. S., Yanamandra-Fisher, P. A., Fisher, B. M., et al. 2008, Nature, 453, 196
Rego, D., Achilleos, N., Stallard, T., et al. 1999, Nature, 399, 121
Sanchez-Lavega, A., Gomez, J. M., Rojas, J. F., et al. 1998, Icarus, 131, 341
Sanchez-Lavega, A., Rojas, J. F., & Sada, P. V. 2000, Icarus, 147, 405
Shah, K. P., Muhleman, D. O., & Berge, G. L. 1991, Icarus, 93, 96
Sinclair, J. A., Orton, G. S., Greathouse, T. K., et al. 2017, Geophys. Res. Lett., 44, 5345
Sinclair, J. A., Orton, G. S., Greathouse, T. K., et al. 2018, Icarus, 300, 305
Sinclair, J. A., Moses, J. I., Hue, V., et al. 2019, Icarus, 328, 176
Smith, B. A., Soderblom, L., Beebe, R. F., et al. 1981, Science, 212, 163
Spiga, A., Guerlet, S., Millour, E., et al. 2020, Icarus, 335, 113377
Stallard, T., Miller, S., Millward, G., & Joseph, R. D. 2001, Icarus, 154, 475
Stallard, T. S., Miller, S., Cowley, S. W. H., & Bunce, E. J. 2003, Geophys. Res. Lett., 30, 1221
Wong, A.-S., Yung, Y. L., & Friedson, A. J. 2003, Geophys. Res. Lett., 30, 1447
Yates, J. N., Ray, L. C., Achilleos, N., Witasse, O., & Altobelli, N. 2020, J. Geophys. Res., 125, e26792
Zhang, X., West, R. A., Banfield, D., & Yung, Y. L. 2013, Icarus, 226, 159