Article (Scientific journals)
Monitoring of the evolution of H2O vapor in the stratosphere of Jupiter over an 18-yr period with the Odin space telescope
Benmahi, Bilal; Cavalié, T.; Dobrijevic, M. et al.
2020In Astronomy and Astrophysics, 641, p. 140
Peer Reviewed verified by ORBi
 

Files


Full Text
Benmahi et al. - 2020 - Monitoring of the evolution of H2O vapor in the st.pdf
Author postprint (1.41 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Planets and satellites: atmospheres; Planets and satellites: individual: Jupiter; Submillimeter: planetary systems; Auroral latitudes; Eddy diffusions; Loss mechanisms; Photochemical conversion; Photochemical modeling; Pressure ranges; Radiative transfer model; Temporal evolution; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] Context. The comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, with water vapor (H2O) among them. Aims. With the aid of a photochemical model, H2O can be used as a dynamical tracer in the Jovian stratosphere. In this paper, we aim to constrain the vertical eddy diffusion (Kzz) at levels where H2O is present. Methods. We monitored the H2O disk-averaged emission at 556.936 GHz with the space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain the vertical eddy diffusion in the stratosphere of Jupiter. Results. Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019. We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, that is, from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that even if an allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, which is suggestive of additional loss mechanisms. Conclusions. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would naturally be the next step in this area of study.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Benmahi, Bilal  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, Cnrs, Pessac, France
Cavalié, T.;  Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, Cnrs, Pessac, France ; Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Dobrijevic, M.;  Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, Cnrs, Pessac, France
Biver, N.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Bermudez-Diaz, K.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France ; Université Montpellier 2 Sciences et Techniques, Montpellier, France
Sandqvist, Aa.;  Stockholm Observatory, Stockholm University, AlbaNova University Center, Stockholm, Sweden
Lellouch, E.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Moreno, R.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Fouchet, T.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Hue, V.;  Southwest Research Institute, San Antonio, United States
Hartogh, P.;  Max Planck Institut für Sonnensystemforschung, Göttingen, Germany
Billebaud, F.;  Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, Cnrs, Pessac, France
Lecacheux, A.;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Univ. Paris Diderot, Meudon, France
Hjalmarson, Å.;  Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden
Frisk, U.;  Omnisys Instruments Ab, Solna, Sweden
Olberg, M.;  Chalmers University of Technology, Gothenburg, Sweden
More authors (6 more) Less
Language :
English
Title :
Monitoring of the evolution of H2O vapor in the stratosphere of Jupiter over an 18-yr period with the Odin space telescope
Publication date :
September 2020
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences
Volume :
641
Pages :
A140
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
cA knowledgments. This work was supported by the Programme National de Planétologie (PNP) of CNRS/INSU and by CNES. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), the Centre National d’Études Spatiales (CNES), France and the European Space Agency (ESA). The former Space division of the Swedish Space Corporation, today OHB Sweden, is the prime contractor, also responsible for Odin operations.
Commentary :
9 pages, 8 figures, accepted in Astronomy and Astrophysics
Available on ORBi :
since 26 February 2024

Statistics


Number of views
4 (0 by ULiège)
Number of downloads
2 (0 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
2
OpenCitations
 
5
OpenAlex citations
 
7

Bibliography


Similar publications



Contact ORBi