High Temperature-Induced Oxidative Stress Affects Systemic Zinc Homeostasis in Broilers by Regulating Zinc Transporters and Metallothionein in the Liver and Jejunum.
Xiao, Chuanpi; Kong, Linglian; Pan, Xueet al.
2022 • In Oxidative Medicine and Cellular Longevity, 2022, p. 1427335
[en] To investigate the change in zinc homeostasis of broilers under heat stress, 512 broiler chickens were raised to the age of 28 days. The broilers were then assigned to heat stress and normal temperature (36.0°C vs. 26.0°C) groups for 7 days. The results showed that oxidative stress induced by high temperature had a negative effect on the growth performance of broilers. Heat stress altered zinc homeostasis and led to a redistribution of zinc in broilers, which was reflected in increased zinc concentrations in the jejunum, liver, and tibia. Upregulation of the expression of the zinc exporter ZnT1 and importers ZIP8 and ZIP14 in the jejunum indicated that more zinc was absorbed and transported from the jejunum into the blood, while the liver increased its capacity to hold zinc through upregulation of metallothionein (MT) expression, which was achieved by reducing ZnT1 expression and upregulating the expression of the importer ZIP3. The pathway was mediated by zinc transporters, but the capacity of MT to chelate and release zinc ions also played a crucial role. The mechanism of alterations in zinc homeostasis under heat stress was revealed by the changes in zinc transporters and MT levels in the intestine and liver. Heat stress also altered cecal microbial diversity and reduced the relative abundances of Bilophila and Dialister. In conclusion, broilers altered systemic zinc homeostasis through the regulation of zinc transporters and MT in the liver and jejunum to resist oxidative stress induced by high temperature.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Xiao, Chuanpi ; Université de Liège - ULiège > TERRA Research Centre ; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
Kong, Linglian; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
Pan, Xue; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
Zhu, Qidong; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
Song, Zhigang ; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
Everaert, Nadia ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Language :
English
Title :
High Temperature-Induced Oxidative Stress Affects Systemic Zinc Homeostasis in Broilers by Regulating Zinc Transporters and Metallothionein in the Liver and Jejunum.
Tallentire C. W., Leinonen I., Kyriazakis I., Breeding for efficiency in the broiler chicken: a review. Agronomy for Sustainable Development 2016, 36, 4, 66, 10.1007/s13593-016-0398-2, 2-s2.0-85007507918
Liu L., Ren M., Ren K., Jin Y., Yan M., Heat stress impacts on broiler performance: a systematic review and meta-analysis. Poultry Science 2020, 99, 11, 6205, 6211, 10.1016/j.psj.2020.08.019, 33142538
Emami N. K., Jung U., Voy B., Dridi S., Radical response: effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 2021, 10, 1, 35, 10.3390/antiox10010035
Hosseini-Vashan S. J., Golian A., Yaghobfar A., Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. International Journal of Biometeorology 2016, 60, 8, 1183, 1192, 10.1007/s00484-015-1112-9, 2-s2.0-84947812601, 26589827
Uerlings J., Song Z. G., Hu X. Y., Wang S. K., Lin H., Buyse J., Everaert N., Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poultry Science 2018, 97, 10, 3681, 3690, 10.3382/ps/pey229, 2-s2.0-85055640125, 29901744
Kumada K., Fuse N., Tamura T., Okamori C., Kurata S., HSP70/DNAJA3 chaperone/cochaperone regulates NF-κ B activity in immune responses. Biochemical and Biophysical Research Communications 2019, 513, 4, 947, 951, 10.1016/j.bbrc.2019.04.077, 2-s2.0-85065776699, 31005254
Wu G., Principles of Animal Nutrition 2017, CRC Press 10.1201/9781315120065
Kambe T., Yamaguchi-Iwai Y., Sasaki R., Nagao M., Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences: CMLS 2004, 61, 1, 49, 68, 14704853
Baltaci A. K., Yuce K., Mogulkoc R., Zinc metabolism and metallothioneins. Biological Trace Element Research 2018, 183, 1, 22, 31, 10.1007/s12011-017-1119-7, 2-s2.0-85028536131, 28812260
Mocchegiani E., Costarelli L., Giacconi R., Piacenza F., Basso A., Malavolta M., Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach. Biogerontology 2011, 12, 5, 455, 465, 10.1007/s10522-011-9337-4, 2-s2.0-83255192157, 21503725
Kambe T., Tsuji T., Hashimoto A., Itsumura N., The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiological Reviews 2015, 95, 3, 749, 784, 10.1152/physrev.00035.2014, 2-s2.0-84931378552, 26084690
Prasad A. S., Bao B., Beck F. W., Sarkar F. H., Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κ B. Nutrition 2011, 27, 7-8, 816, 823, 10.1016/j.nut.2010.08.010, 2-s2.0-79959266274, 21035309
Gheisari A., Sanei A., Samie A., Gheisari M., Toghyani M., Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biological Trace Element Research 2011, 142, 3, 557, 571, 10.1007/s12011-010-8779-x, 2-s2.0-80051780912, 20711683
Attia Y., Abd Al-Hamid A., Zeweil H., Qota E., Bovera F., Monastra G., Sahledom M., Effect of dietary amounts of inorganic and organic zinc on productive and physiological traits of white Pekin ducks. Animal 2013, 7, 6, 895, 900, 10.1017/S1751731113000050, 2-s2.0-84877122391, 23369625
Bortoluzzi C., Vieira B. S., Applegate T. J., Influence of dietary zinc, copper, and manganese on the intestinal health of broilers under Eimeria challenge. Frontiers in Veterinary Science 2020, 7, 13, 10.3389/fvets.2020.00013, 32064270
Kloubert V., Wessels I., Wolf J., Blaabjerg K., Janssens V., Hapala J., Wagner W., Rink L., Zinc deficiency leads to reduced interleukin-2 production by active gene silencing due to enhanced CREM α expression in T cells. Clinical Nutrition 2020, 40, 5, 3263, 3278, 10.1016/j.clnu.2020.10.052
Sahin K., Sahin N., Kucuk O., Hayirli A., Prasad A. S., Role of dietary zinc in heat-stressed poultry: a review. Poultry Science 2009, 88, 10, 2176, 2183, 10.3382/ps.2008-00560, 2-s2.0-70349755427, 19762873
Zhou Z., Wang L., Song Z., Saari J. T., McClain C. J., Kang Y. J., Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. The American Journal of Pathology 2005, 166, 6, 1681, 1690, 15920153
Wasti S., Sah N., Mishra B., Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 8, 1266, 10.3390/ani10081266
Attia Y. A., Hassan S. S., Broiler tolerance to heat stress at various dietary protein/energy levels. European Poultry Science 2017, 81, 10.1399
Deng W., Dong X., Tong J. M., Zhang Q., The probiotic _Bacillus licheniformis_ ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens1Poultry Science 2012, 91, 3, 575, 582, 10.3382/ps.2010-01293, 2-s2.0-84863178057, 22334732
Mack L. A., Felver-Gant J. N., Dennis R. L., Cheng H. W., Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poultry Science 2013, 92, 2, 285, 294, 10.3382/ps.2012-02589, 2-s2.0-84872354181, 23300291
Belhadj Slimen I., Najar T., Ghram A., Abdrrabba M., Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition 2016, 100, 3, 401, 412, 10.1111/jpn.12379, 2-s2.0-84938874706, 26250521
Attia Y. A., Al-Harthi M. A., Abo El-Maaty H. M., The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, antioxidant, and morphometric responses of broiler chicks. Frontiers in Veterinary Science 2020, 7, 181, 10.3389/fvets.2020.00181
Tan G. Y., Yang L., Fu Y. Q., Feng J. H., Zhang M. H., Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poultry Science 2010, 89, 1, 115, 122, 10.3382/ps.2009-00318, 2-s2.0-72249106233, 20008809
Thomas M. J., The role of free radicals and antioxidants. Nutrition 2000, 16, 7-8, 716, 718, 10.1016/S0899-9007(00)00343-9, 2-s2.0-0034235506
Shakeri M., Oskoueian E., Le H. H., Shakeri M., Strategies to combat heat stress in broiler chickens: unveiling the roles of selenium, vitamin E and vitamin C. Veterinary Sciences 2020, 7, 2, 71, 10.3390/vetsci7020071
Hall D. M., Buettner G. R., Oberley L. W., Xu L., Matthes R. D., Gisolfi C. V., Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. American Journal of Physiology. Heart and Circulatory Physiology 2001, 280, 2, H509, H521, 11158946
Shakeri M., Cottrell J. J., Wilkinson S., Zhao W., Le H. H., McQuade R., Furness J. B., Dunshea F. R., Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by Evans blue dye in broiler chickens. Animals 2020, 10, 1, 38, 10.3390/ani10010038
Cong X., Zhang Q., Li H., Jiang Z., Cao R., Gao S., Tian W., Puerarin ameliorates heat stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression. Theriogenology 2017, 88, 215, 227, 10.1016/j.theriogenology.2016.09.033, 2-s2.0-84996483687, 27771118
Tang S., Yin B., Xu J., Bao E., Rosemary reduces heat stress by inducing CRYAB and HSP70 expression in broiler chickens. Oxidative Medicine and Cellular Longevity 2018, 2018, 7014126, 10.1155/2018/7014126, 2-s2.0-85056512022, 30425783
Pires B. R. B., Silva R., Ferreira G. M., NF-kappaB: two sides of the same coin. Genes 2018, 9, 1, 24, 10.3390/genes9010024, 2-s2.0-85040533751
Orhan C., Akdemir F., Sahin N., Tuzcu M., Komorowski J. R., Hayirli A., Sahin K., Chromium histidinate protects against heat stress by modulating the expression of hepatic nuclear transcription factors in quail. British Poultry Science 2012, 53, 6, 828, 835, 10.1080/00071668.2012.747084, 2-s2.0-84873921786, 23398428
Sahin K., Orhan C., Akdemir F., Tuzcu M., Iben C., Sahin N., Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf 2 transcription factor and heat shock proteins. Journal of Animal Physiology and Animal Nutrition 2012, 96, 1, 66, 74, 10.1111/j.1439-0396.2010.01123.x, 2-s2.0-84855751379, 21244525
Abildtrup M., Kingsley G. H., Scott D. L., Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. The Journal of Rheumatology 2015, 42, 5, 760, 770, 10.3899/jrheum.140628, 2-s2.0-84940538007, 25729036
Baer M. T., King J. C., Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. The American Journal of Clinical Nutrition 1984, 39, 4, 556, 570, 6711466
Condomina J., Zornoza-Sabina T., Granero L., Polache A., Kinetics of zinc transport in vitro in rat small intestine and colon: interaction with copper. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 2002, 16, 4-5, 289, 295, 12208459
Hojyo S., Fukada T., Zinc transporters and signaling in physiology and pathogenesis. Archives of Biochemistry and Biophysics 2016, 611, 43, 50, 10.1016/j.abb.2016.06.020, 2-s2.0-84994494819, 27394923
Krebs N. E., Hambidge K. M., Zinc metabolism and homeostasis: the application of tracer techniques to human zinc physiology. Zinc Biochemistry, Physiology, and Homeostasis 2001, 14, 3/4, 397, 412, 10.1023/A:1012942409274, 2-s2.0-0035693672
Dempski R. E., The cation selectivity of the ZIP transporters. Current Topics in Membranes 2012, 69, 221, 245, 10.1016/B978-0-12-394390-3.00009-4, 2-s2.0-84867146865, 23046653
Liuzzi J. P., Lichten L. A., Rivera S., Blanchard R. K., Aydemir T. B., Knutson M. D., Ganz T., Cousins R. J., Interleukin-6 regulates the zinc transporter Zip 14 in liver and contributes to the hypozincemia of the acute-phase response. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 19, 6843, 6848, 15863613
Wu A., Bai S., Ding X., Wang J., Zeng Q., Peng H., Wu B., Zhang K., The systemic zinc homeostasis was modulated in broilers challenged by salmonella. Biological Trace Element Research 2020, 196, 1, 243, 251, 10.1007/s12011-019-01921-1, 2-s2.0-85074042163, 31641975
Marreiro D. D., Cruz K. J., Morais J. B., Beserra J. B., Severo J. S., de Oliveira A. R., Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 2, 24, 10.3390/antiox6020024, 2-s2.0-85016581977, 28353636
Aydemir T. B., Chang S. M., Guthrie G. J., Maki A. B., Ryu M. S., Karabiyik A., Cousins R. J., Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One 2012, 7, 10, article e48679, 10.1371/journal.pone.0048679, 2-s2.0-84868118216, 23110240
Sun Q., Li Q., Zhong W., Zhang J., Sun X., Tan X., Yin X., Sun X., Zhang X., Zhou Z., Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease. American Journal of Physiology. Gastrointestinal and Liver Physiology 2014, 307, 3, G313, G322, 10.1152/ajpgi.00081.2014, 2-s2.0-84905283064, 24924749
Olgar Y., Tuncay E., Turan B., Mitochondria-targeting antioxidant provides cardioprotection through regulation of cytosolic and mitochondrial Zn2+ levels with re-distribution of Zn2+-Transporters in aged Rat Cardiomyocytes. International Journal of Molecular Sciences 2019, 20, 15, 3783, 10.3390/ijms20153783, 2-s2.0-85071010552, 31382470
Fujishiro H., Yano Y., Takada Y., Tanihara M., Himeno S., Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 2012, 4, 7, 700, 708, 10.1039/c2mt20024d, 2-s2.0-84863671736, 22534978
Stuart G. W., Searle P. F., Palmiter R. D., Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 1985, 317, 6040, 828, 831, 4058587
Wu A., Tymoszuk P., Haschka D., Heeke S., Dichtl S., Petzer V., Seifert M., Hilbe R., Sopper S., Talasz H., Bumann D., Lass-Flörl C., Theurl I., Zhang K., Weiss G., Salmonella utilizes zinc to subvert antimicrobial host defense of macrophages via modulation of NF-κ B signaling. Infection and Immunity 2017, 85, 12, 12, 10.1128/IAI.00418-17, 2-s2.0-85032432501
Morgan C. I., Ledford J. R., Zhou P., Page K., Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. Journal of Inflammation 2011, 8, 1, 36, 10.1186/1476-9255-8-36, 2-s2.0-82755195808, 22151973
Sommer F., Anderson J. M., Bharti R., Raes J., Rosenstiel P., The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology 2017, 15, 10, 630, 638, 10.1038/nrmicro.2017.58, 2-s2.0-85026764558, 28626231
Shehata A. M., Paswan V. K., Attia Y. A., Abougabal M. S., Sharaf M., Elmazoudy R., Alghafari W. T., Osman M. A., Farag M. R., Managing gut microbiota through in ovo nutrition influences early-life programming in broiler chickens. Animals 2021, 11, 12, 3491, 10.3390/ani11123491, 34944266
Huang Y., Lv H., Song Y., Sun C., Zhang Z., Chen S., Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poultry Science 2021, 100, 4, article 100996, 10.1016/j.psj.2021.01.019, 33667869
Peck S. C., Denger K., Burrichter A., Irwin S. M., Balskus E. P., Schleheck D., A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proceedings of the National Academy of Sciences of the United States of America 2019, 116, 8, 3171, 3176, 10.1073/pnas.1815661116, 2-s2.0-85061851771, 30718429
Pieper R., Dadi T. H., Pieper L., Vahjen W., Franke A., Reinert K., Zentek J., Concentration and chemical form of dietary zinc shape the porcine colon microbiome, its functional capacity and antibiotic resistance gene repertoire. The ISME Journal 2020, 14, 11, 2783, 2793, 10.1038/s41396-020-0730-3, 32747713
Reed S., Knez M., Uzan A., Stangoulis J. C. R., Glahn R. P., Koren O., Tako E., Alterations in the gut (Gallus gallus) microbiota following the consumption of zinc biofortified wheat (Triticum aestivum)-based diet. Journal of Agricultural and Food Chemistry 2018, 66, 25, 6291, 6299, 10.1021/acs.jafc.8b01481, 2-s2.0-85048236263, 29871482