[en] Rice blast and bacterial blight, caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively, are devastating diseases affecting rice. Here, we report that a rice valine-glutamine (VQ) motif-containing protein, OsVQ25, balances broad-spectrum disease resistance and plant growth by interacting with a U-Box E3 ligase, OsPUB73, and a transcription factor, OsWRKY53. We show that OsPUB73 positively regulates rice resistance against M. oryzae and Xoo by interacting with and promoting OsVQ25 degradation via the 26S proteasome pathway. Knockout mutants of OsVQ25 exhibit enhanced resistance to both pathogens without a growth penalty. Furthermore, OsVQ25 interacts with and suppresses the transcriptional activity of OsWRKY53, a positive regulator of plant immunity. OsWRKY53 downstream defense-related genes and brassinosteroid signaling genes are upregulated in osvq25 mutants. Our findings reveal a ubiquitin E3 ligase-VQ protein-transcription factor module that fine-tunes plant immunity and growth at the transcriptional and posttranslational levels.
Disciplines :
Agriculture & agronomy
Author, co-author :
Hao, Zeyun ✱; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Tian, Jinfu ✱; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Fang, Hong ✱; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
Fang, Liang; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Xu, Xiao; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
He, Feng; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Li, Shaoya; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Xie, Wenya; Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
Du, Qiang; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
You, Xiaoman; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Wang, Debao; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Chen, Qiuhong; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
Wang, Ruyi; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Zuo, Shimin; Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
Yuan, Meng; National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
Wang, Guo-Liang; Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
Xia, Lanqin; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China, Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China. Electronic address: xialanqin@caas.cn
Ning, Yuese ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address: ningyuese@caas.cn
NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by grants from the National Natural Science Foundation of China ( 32161143009 , 31822041 , and 31972225 ) to Y.N., the Major Research Plan of the National Natural Science Foundation of China ( 3218810004 ) to L.X., and the National Natural Science Foundation of China ( U20A2021 ) to R.W.
Ali, M.R.M., Uemura, T., Ramadan, A., Adachi, K., Nemoto, K., Nozawa, A., Hoshino, R., Abe, H., Sawasaki, T., Arimura, G.I., The ring-type E3 ubiquitin ligase JUL1 targets the VQ-motif protein JAV1 to coordinate jasmonate signaling. Plant Physiol. 179 (2019), 1273–1284.
Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H.T., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., et al. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J. 24 (2005), 2579–2589.
Chen, L., Deng, R., Liu, G., Jin, J., Wu, J., Liu, X., Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice. BMC Plant Biol., 19, 2019, 546.
Chi, Y., Yang, Y., Zhou, Y., Zhou, J., Fan, B., Yu, J.Q., Chen, Z., Protein-protein interactions in the regulation of WRKY transcription factors. Mol. Plant 6 (2013), 287–300.
Chujo, T., Miyamoto, K., Ogawa, S., Masuda, Y., Shimizu, T., Kishi-Kaboshi, M., Takahashi, A., Nishizawa, Y., Minami, E., Nojiri, H., et al. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLoS One, 9, 2014, e98737.
Chujo, T., Takai, R., Akimoto-Tomiyama, C., Ando, S., Minami, E., Nagamura, Y., Kaku, H., Shibuya, N., Yasuda, M., Nakashita, H., et al. Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim. Biophys. Acta 1769 (2007), 497–505.
Clarke, J.D., Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc., 2009, 2009 pdb.prot5177.
Duplan, V., Rivas, S., E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front. Plant Sci., 5, 2014, 42.
Fan, J., Bai, P., Ning, Y., Wang, J., Shi, X., Xiong, Y., Zhang, K., He, F., Zhang, C., Wang, R., et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe 23 (2018), 498–510.e5.
Fang, H., Shen, S., Wang, D., Zhang, F., Zhang, C., Wang, Z., Zhou, Q., Wang, R., Tao, H., He, F., et al. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci. Bull. 66 (2021), 2381–2393.
Fiil, B.K., Petersen, M., Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. Plant Signal. Behav. 6 (2011), 1425–1427.
Hu, P., Zhou, W., Cheng, Z., Fan, M., Wang, L., Xie, D., JAV1 controls jasmonate-regulated plant defense. Mol. Cell 50 (2013), 504–515.
Jiang, S.Y., Sevugan, M., Ramachandran, S., Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genom., 19, 2018, 342.
Jing, Y., Lin, R., The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol. 169 (2015), 371–378.
Ke, Y., Deng, H., Wang, S., Advances in understanding broad-spectrum resistance to pathogens in rice. Plant J. 90 (2017), 738–748.
Kim, D.Y., Kwon, S.I., Choi, C., Lee, H., Ahn, I., Park, S.R., Bae, S.C., Lee, S.C., Hwang, D.J., Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529 (2013), 208–214.
Kou, Y., Wang, S., Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant. Biol. 13 (2010), 181–185.
Lai, Z., Li, Y., Wang, F., Cheng, Y., Fan, B., Yu, J.Q., Chen, Z., Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23 (2011), 3824–3841.
Li, N., Li, X., Xiao, J., Wang, S., Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. Plant Cell Rep. 33 (2014), 1493–1505.
Li, N., Yang, Z., Li, J., Xie, W., Qin, X., Kang, Y., Zhang, Q., Li, X., Xiao, J., Ma, H., Wang, S., Two VQ proteins are substrates of the OsMPKK6-OsMPK4 cascade in rice defense against bacterial blight. Rice, 14, 2021, 39.
Li, W., Deng, Y., Ning, Y., He, Z., Wang, G.L., Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71 (2020), 575–603.
Liu, J., Park, C.H., He, F., Nagano, M., Wang, M., Bellizzi, M., Zhang, K., Zeng, X., Liu, W., Ning, Y., et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog., 11, 2015, e1004629.
Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5 (2019), 389–400.
Liu, Q., Ning, Y., Zhang, Y., Yu, N., Zhao, C., Zhan, X., Wu, W., Chen, D., Wei, X., Wang, G.L., et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. Plant Cell 29 (2017), 345–359.
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8 (2015), 1274–1284.
Nelson, R., Wiesner-Hanks, T., Wisser, R., Balint-Kurti, P., Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19 (2018), 21–33.
Ning, Y., Liu, W., Wang, G.L., Balancing immunity and yield in crop plants. Trends. Plant. Sci. 22 (2017), 1069–1079.
Ning, Y., Wang, R., Shi, X., Zhou, X., Wang, G.L., A layered defense strategy mediated by rice E3 ubiquitin ligases against diverse pathogens. Mol. Plant 9 (2016), 1096–1098.
Petersen, K., Qiu, J.L., Lütje, J., Fiil, B.K., Hansen, S., Mundy, J., Petersen, M., Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS One, 5, 2010, e14364.
Shi, X., Long, Y., He, F., Zhang, C., Wang, R., Zhang, T., Wu, W., Hao, Z., Wang, Y., Wang, G.L., Ning, Y., The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog., 14, 2018, e1006878.
Sadanandom, A., Bailey, M., Ewan, R., Lee, J., Nelis, S., The ubiquitin-proteasome system: central modifier of plant signalling. New. Phytol. 196 (2012), 13–28.
Uji, Y., Kashihara, K., Kiyama, H., Mochizuki, S., Akimitsu, K., Gomi, K., Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice. Int. J. Mol. Sci., 20, 2019, 2917.
Vierstra, R.D., The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell. Biol. 10 (2009), 385–397.
Wang, J., Wang, R., Fang, H., Zhang, C., Zhang, F., Hao, Z., You, X., Shi, X., Park, C.H., Hua, K., et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice. Mol. Plant 14 (2021), 253–266.
Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., et al. A single transcription factor promotes both yield and immunity in rice. Science 361 (2018), 1026–1028.
Wang, R., Ning, Y., Shi, X., He, F., Zhang, C., Fan, J., Jiang, N., Zhang, Y., Zhang, T., Hu, Y., et al. Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr. Biol. 26 (2016), 2399–2411.
Xie, W., Ke, Y., Cao, J., Wang, S., Yuan, M., Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance. Plant Physiol. 187 (2021), 1746–1761.
Xie, Y.D., Li, W., Guo, D., Dong, J., Zhang, Q., Fu, Y., Ren, D., Peng, M., Xia, Y., The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. Plant. Cell. Environ. 33 (2010), 828–839.
Yan, C., Fan, M., Yang, M., Zhao, J., Zhang, W., Su, Y., Xiao, L., Deng, H., Xie, D., Injury activates Ca(2+)/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol. Cell 70 (2018), 136–149.e7.
Yoo, S.D., Cho, Y.H., Sheen, J., Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2 (2007), 1565–1572.
You, Q., Zhai, K., Yang, D., Yang, W., Wu, J., Liu, J., Pan, W., Wang, J., Zhu, X., Jian, Y., et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance. Cell Host Microbe 20 (2016), 758–769.
You, X., Zhu, S., Zhang, W., Zhang, J., Wang, C., Jing, R., Chen, W., Wu, H., Cai, Y., Feng, Z., et al. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol. 224 (2019), 712–724.
Zeng, L.R., Park, C.H., Venu, R.C., Gough, J., Wang, G.L., Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol. Plant 1 (2008), 800–815.
Zeng, L.R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., Xie, Q., Nahm, B.H., Leung, H., Wang, G.L., Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16 (2004), 2795–2808.
Zeng, L.R., Vega-Sánchez, M.E., Zhu, T., Wang, G.L., Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res. 16 (2006), 413–426.
Zhang, C., Fang, H., Shi, X., He, F., Wang, R., Fan, J., Bai, P., Wang, J., Park, C.H., Bellizzi, M., et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor. Plant Biotechnol. J. 18 (2020), 2354–2363.
Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA 115 (2018), 3174–3179.