Impact of Land Cover Changes on Reducing Greenhouse Emissions: Site Selection, Baseline Modeling, and Strategic Environmental Assessment of REDD+ Projects
[en] Reducing emissions from deforestation and forest degradation (REDD+) is way key to reduce the emission of greenhouse gases (GHGs) while also protecting vulnerable forest ecosystems. The purpose of this study was to recognize suitable areas for REDD+ Programme projects and calculate the reduction in CO2 emissions through the prevention of forest cover degradation in the Central Hyrcanian forests. For this purpose, the cover changes of the Central Hyrcanian forests were assessed using LANDSAT satellite images. Applying the voluntary carbon standard (VCS) methodology and the calibration period 1984–2014 (30 years), forest cover changes were predicted. The results showed that under the business-as-usual scenario, 155,698 ha of Central Hyrcanian forests will be declined by 2044. In general, the REDD+ Programme project implementation will prevent the release of 1,209,231 tCO2e. Based on the social cost of carbon (SCC) approach, the REDD+ Programme project implementation can save 12,092,310 US$. In addition, this approach can be used for the project design document (PDD) of the forest development mechanism.
Disciplines :
Agriculture & agronomy
Author, co-author :
Parsamehr, Koosha; Department of Environment, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University, Noor, Iran
Gholamalifard, Mehdi; Department of Environment, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University, Noor, Iran
Kooch, Yahya; Department of Forestry, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University, Noor, Iran
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
Scheffran, Jürgen; Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
Language :
English
Title :
Impact of Land Cover Changes on Reducing Greenhouse Emissions: Site Selection, Baseline Modeling, and Strategic Environmental Assessment of REDD+ Projects
Adekugbe, O. A., Oyerinde, O. V., Oluwajuwon, T. V., Abisoye, T. R., & Atanda, T. A. (2020). Socio-economic characteristics and level of awareness and perception on reducing emissions from deforestation and forest degradation programme (REDD+) by rural communities in Akure Forest Reserve, Nigeria. Journal of Applied Sciences and Environmental Management, 24(11), 1909–1915. https://doi.org/10.4314/jasem.v24i11.10
Akter, T., Quevauviller, P., Eisenreich, S. J., & Vaes, G. (2018). Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environmental Science & Policy, 89, 163–175. https://doi.org/10.1016/j.envsci.2018.07.002
Atela, J. O., Quinn, C. H., & Minang, P. A. (2014). Are REDD projects pro-poor in their spatial targeting? Evidence from Kenya. Applied Geography, 52, 14–24. https://doi.org/10.1016/j.apgeog.2014.04.009
Bagheri, R., & Shataee, S. (2010). Modeling forest areas decreases, using logistic regression (case study: Chehl-chay catchment, Golestan Province). Iranian Journal of Science and Technology, 2(3), 243–252 (In Persian). https://www.cabdirect.org/cabdirect/abstract/20123184396
Bayrak, M. M., & Marafa, L. M. (2016). Ten years of REDD+: A critical review of the impact of REDD+ on Forest-dependent communities. Sustainability, 8, 620. https://doi.org/10.3390/su8070620
Bell, R. G. (2011). The social cost of carbon and climate change policy. World Resources Institute.
Brandolini, P., Pepe, G., Capolongo, D., Cappadonia, C., Cevasco, A., Conoscenti, C., Marsico, A., Vergari, F., & Del Monte, M. (2018). Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degradation & Development, 29(9), 3050–3068. https://doi.org/10.1002/ldr.2999
Bununu, Y., Ludin, A. N. M., & Hosni, N. (2016). Modeling vegetation loss and greenhouse gas emissions in Kaduna, Nigeria, conference: 10th SEATUC symposium. Shibaura Institute of Technology.
Busch, J., Lubowski, R. N., Godoy, F., Steininger, M., Yusuf, A. A., Austin, K., Hewson, J., Juhn, D., Farid, M., & Boltz, F. (2012). Structuring economic incentives to reduce emissions from deforestation within Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1062–1067. https://doi.org/10.1073/pnas.1109034109
Carter, S., Manceur, A. M., Seppelt, R., Hermans-Neumann, K., Herold, M., & Verchot, L. (2017). Large scale land acquisitions and REDD+: A synthesis of conflicts and opportunities. Environmental Research Letters, 12(3), 035010. https://doi.org/10.1088/1748-9326/aa6056
Eastman, J. R. (2015a). TerrSet Manual (p. 392). Clark University.
Eastman, J. R. (2015b). TerrSet help system. Accessed in TerrSet 18.31. Clark University.
Eastman, J. R., Van Fossen, M. E., & Solorzano, L. A. (2005). Transition potential modeling for land-cover change. In D. Maguire, M. Batty, & M. Goodchild (Eds.), GIS, spatial analysis and modeling (pp. 357–385). ESRI Press.
El Gohary, R. I., & Armanious, S. (2017). Environmental impact assessment for projects in the Nile basin countries. European Journal of Scientific Research, 13(5), 134. http://doi.org/10.19044/esj.2017.v13n5p134
Ferretti, V., & Pomarico, S. (2013). Ecological land suitability analysis through spatial indicators an application of the analytic network process technique and ordered weighted average approach. Ecological Indicators, 34, 507–519. https://doi.org/10.1016/j.ecolind.2013.06.005
Fujisaki, K., Perrin, A. S., Garric, B., Balesdent, J., & Brossard, M. (2020). Soil organic carbon changes after deforestation and agrosystem establishment in Amazonia: An assessment by diachronic approach. Agriculture, Ecosystems & Environment, 245, 63–73. https://doi.org/10.1016/j.agee.2017.05.011
Gholamalifard, M., ZareMaivan, H., JoorabianShooshtari, S., & Mirzaei, M. (2012). Monitoring land cover changes of forests and coastal areas of northern Iran (1988-2010), a remote sensing approach. Journal of the Persian Gulf, 3(10), 47–56. http://jpg.inio.ac.ir/article-1-142-en.html
Ghorbani, H., Kashi, H., Hafezi Moghadas, N., & Emamgholizadeh, S. (2015). Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province. Communications in Soil Science and Plant Analysis, 46(6), 763–780. https://doi.org/10.1080/00103624.2015.1006367
Han, G., Tang, Y., Liu, M., Van Zwieten, L., Yang, X., Yu, C., Wang, H., & Song, Z. (2020). Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agriculture, Ecosystems & Environment, 301, e107027. https://doi.org/10.1016/j.agee.2020.107027
Heidarlou, H. B., Shafiei, A. B., Erfanian, M., Tayyebi, A., & Alijanpour, A. (2019). Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land Use Policy, 81, 76–90. https://doi.org/10.1016/j.landusepol.2018.10.036
Jagger, P., Sills, E. O., Lawlor, K., & Sunderlin, W. D. (2010). A guide to learning about livelihood impacts of REDD+ projects, occasional paper 56. CIFOR.
Ji, Y., & Ranjan, R. (2019). A global climate-economy model including the REDD option. Journal of Environmental Management, 247, 342–355. https://doi.org/10.1016/j.jenvman.2019.06.052
Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184. https://doi.org/10.1080/136588100240903
Joorabian Shooshtari, S., Hosseini, S. M., Esmaili-Sari, A., & Gholamalifard, M. (2012). Monitoring land cover change, degradation, and restoration of the hyrcanian forests in northern Iran (1977–2010). International Journal of Environmental Science, 3(3), 1038–1056. https://doi.org/10.6088/ijes.2012030133012
Junior, A. C., & Rohm, S. A. (2014). Analysis of environmental fragility using multi-criteria analysis (MCE) for integrated landscape assessment. Journal of Urban and Environmental Engineering, 8(1), 28–37. https://doi.org/10.4090/juee.2014.v8n1.028037
Kapos, V., Ravilious, C., Campbell, A., Dickson, B., Gibbs, H., Hansen, M., Lysenko, I., Miles, L., Price, J., Scharlemann, J. P. W., & Trumper, K. (2008). Carbon and biodiversity. UNEP-WCMC.
Kassi, S. A. Y., Koné, A. W., Tondoh, J. E., & Koffi, B. Y. (2021). Corrigendum to “Chromoleana odorata fallow-cropping cycles maintain soil carbon stocks and yam yields 40 years after conversion of native- to farmland, implications for forest conservation”. Agriculture, Ecosystems & Environment, 47 (September) (2017), 298–307. https://doi.org/10.1016/j.agee.2017.06.044
Kim, O. S. (2010). An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD). GIS Transport, 14(5), 631–654. https://doi.org/10.1111/j.1467-9671.2010.01227.x
Kumar, R., Nandy, S., Agarwal, R., & Kushwaha, S. P. S. (2014). Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecological Indicators, 45, 444–455. https://doi.org/10.1016/j.ecolind.2014.05.003
Lin, L. (2012). Geography of REDD+ at multiple scales: Country participation and project location. North Carolina State University Retrieved from http://www.lib.ncsu.Edu/resolver/1840.16/8200
Lin, L., Sills, E., & Cheshire, H. (2014). Targeting areas for reducing emissions from deforestation and forest degradation (REDD+) projects in Tanzania. Global Environmental Change, 24, 277–286. https://doi.org/10.1016/j.gloenvcha.2013.12.003
Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8(4), 270–277. https://doi.org/10.1016/j.jag.2006.01.003
Mao, D., Wang, Z., Wu, B., Zeng, Y., Luo, L., & Zhang, B. (2018). Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degradation & Development, 29(11), 3841–3851. https://doi.org/10.1002/ldr.3135
Maraseni, T. N., Neupane, P. R., Lopez-Casero, F., & Cadman, F. (2014). An assessment of the impacts of the REDD+ Pilot Project on community forests user groups (CFUGs) and their community forests in Nepal. Journal of Environmental Management, 136, 37–46. https://doi.org/10.1016/j.jenvman.2014.01.011
Maraseni, T. N., Poudyal, B. H., Rana, E., Khanal, S. C., Ghimire, P. L., & Subedi, B. P. (2020). Mapping national REDD+ initiatives in the Asia-Pacific region. Journal of Environmental Management, 269, e110763. https://doi.org/10.1016/j.jenvman.2020.110763
Mas, J. F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010
Mas, J. F., Puing, H., Palacio, J. L., & Sosa-Lopez, A. (2004). Modeling deforestation using GIS and artificial neural networks. Environmental Modelling & Software, 19, 461–471. https://doi.org/10.1016/S1364-8152(03)00161-0
Matheus, F. S. (2018). The role of forests and protected areas in climate change mitigation: A review and critique of the ecosystem services and REDD+ approaches. Desenvolvimento e Meio Ambiente, 46, 23–36. https://doi.org/10.5380/dma.v46i0.54187
Mattsson, E., Persson, U. M., Ostwald, M., & Nissanka, S. P. (2012). REDD+ readiness implications for Sri Lanka in terms of reducing deforestation. Journal of Environmental Management, 100, 29–40. https://doi.org/10.1016/j.jenvman.2012.01.018
Mehri, A., Salman Mahiny, A., Mirkarimi, S. H., & Rezaei, H. R. (2014). Use of optimization algorithms to priorities protected areas in Mazandaran Province of Iran. Journal for Nature Conservation, 22(5), 462–470. https://doi.org/10.1016/j.jnc.2014.05.002
Mirzayi, M., RiyahiBakhtiyari, A., Salman Mahini, A., & Gholamalifard, M. (2013). Investigating the land cover changes in Mazandaran Province using landscape ecology's metrics between 1984-2010. Iranian Journal of Applied Ecology, 2(4), 37–55 (In Persian). http://ijae.iut.ac.ir/article-1-325-en.html
Mwayafu, D. M., & Kisekka, J. W. (2012). Promoting and implementing REDD+ safeguards at national level in East Africa, REDD-net programme.
Nahib, I., & Suwarno, Y. (2018). Modeling deforestation and greenhouses gas emissions in Morowali Utara District, Central Sulawesi Province Indonesia. IOP Conference Series. Journal of Earth and Environmental Sciences, (Vol. 165, pp. 012030). IOP Publishing. https://doi.org/10.1088/1755-1315/165/1/012030.
Nahib, I., Turmudi, T., Munajati, S., & Windiastuti, R. (2018). Simulation impact of REDD policy: Case study of forest area in Indonesia. International Journal of Environment, Agriculture and Biotechnology, 3(3), 776–786. http://dx.doi.org/10.22161/ijeab/3.3.9
Nahib, I., Turmudi, T., Windiastuti, R., Suryanta, J., Dewi, R. S., & Lestari, S. (2018). Comparing of land change modeler and Geomod modeling for the assessment of deforestation (case study: Forest area at Poso Regency, Central Sulawesi Province). International Journal of Advanced Engineering, Management and Science, 4(8), 597–607. https://dx.doi.org/10.22161/ijaems.4.8.4
Naidoo, R., & Iwamura, T. (2007). Global-scale mapping of economic benefits from agricultural lands: Implications for conservation priorities. Biological Conservation, 140(1), 40–49. https://doi.org/10.1016/j.biocon.2007.07.025
Nordhaus, W. (2011). Estimates of the social cost of carbon: Background and results from the RICE-2011 model. Cowles Foundation discussion paper No. 1826. Yale University. https://doi.org/10.2139/ssrn.1945844
Parsamehr, K., Gholamalifard, M., & Kooch, Y. (2019). Comparing three transition potential modeling for identifying suitable sites for REDD+ projects. Spatial Information Research, 28, 159–171. https://doi.org/10.1007/s41324-019-00273-1
Pastakia, C. M. R., & Jensen, A. (1998). The rapid impact assessment matrix (RIAM) for EIA. Environmental Impact Assessment Review, 18(5), 461–482. https://doi.org/10.1016/S0195-9255(98)00018-3
Pedroni, L., Garcia, A., De jong, B., Schlamadinger, B., Steiniger, M., Brown, S., Pearson, T., Andrasko, K., & Scholz, S. (2008). BioCF RED Mosaic Methodology-Version1 of the BioCarbon Fund's proposed methodology for estimating reductions of GHG emissions from mosaic deforestation. Published date: 2009/10/14. Retrieved from http://wbcarbonfi nance.org/Router.cfm?Page=Doclib&CatalogID=49189
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Sci-Hub, 344(6187), 1246752. https://doi.org/10.1126/science.1246752
Pirbavaghar, M., Darvishsefat, A., & Namiranian, M. (2003). The study of spatial distribution of changes in the northern forests of Iran, Proceedings of Map Asia.
Reddy, C. S., Singh, S., Dadhwal, V. K., Jha, C. S., Rao, N. R., & Diwakar, P. G. (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(1), 1–16. https://doi.org/10.1007/s12040-016-0786-7
Roudgarmi, P., & Mahdiraji, M. T. A. (2020). Current challenges of Laws for preservation of forest and rangeland, Iran. Land Use Policy, 99, 105002. https://doi.org/10.1016/j.landusepol.2020.105002
Roy, H. G., Fox, D. M., & Emsellem, K. (2014). Predicting land cover change in a Mediterranean catchment at different time scales. Computer Science Admission Category, 8582, 315–330. https://doi.org/10.1007/978-3-319-09147-1_23
Ruesch, A., & Gibbs, H. K. (2008). New IPCC Tier-1 global biomass carbon map for the year 2000. Available online from the Carbon Dioxide Information Analysis Center [http://cdiac.ornl.gov]. Oak Ridge National Laboratory, USA.
Saaty, T. L. (1990). The analytic hierarchy process in conflict management. International Journal of Conflict Management, 1(1), 47–68. https://doi.org/10.1108/eb022672
Sahoo, S., Sil, I., Dhar, A., Debsarkar, A., Das, P., & Kar, A. (2018). Future scenarios of land-use suitability modeling for agricultural sustainability in a river basin. Journal of Cleaner Production, 205, 313–328. https://doi.org/10.1016/j.jclepro.2018.09.099
Salvini, G., Ligtenberg, A., van Paassen, A., Bregt, A. K., Avitabile, V., & Herold, M. (2016). REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. Journal of Environmental Management, 172, 58–70. https://doi.org/10.1016/j.jenvman.2015.11.060
Samndong, R. A., Bush, G., Vatn, A., & Chapman, M. (2018). Institutional analysis of causes of deforestation in REDD+ pilot sites in the Equateur Province: Implication for REDD+ in the Democratic Republic of Congo. Land Use Policy, 76, 664–674. https://doi.org/10.1016/j.landusepol.2018.02.048
Sheng, J. (2020). Private sector participation and incentive coordination of actors in REDD+. Forest Policy and Economics, 118, e102262. https://doi.org/10.1016/j.forpol.2020.102262
Sheng, J., Ozturk, U. A., & Zhang, S. (2016). Effects of asymmetric information and reference emission levels on the emissions from deforestation and degradation. Journal of Cleaner Production, 133, 1118–1127. https://doi.org/10.1016/j.jclepro.2016.05.186
Shooshtari, S. J., & Gholamalifard, M. (2015). Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka watershed, Iran. Remote Sensing Applications: Society and Environment, 1, 1–19. https://doi.org/10.1016/j.rsase.2015.05.001
Srinivasarao, C., Jasti, V. N. S. P., Kondru, V. R., Bathineni, V. S. K., Mudigiri, R., Venati, G. V., Priyadarshini, P., Abhilash, P. C., & Chaudhari, S. K. (2022). Land and water conservation technologies for building carbon positive villages in India. Land Degradation & Development, 33(3), 395–412. https://doi.org/10.1002/ldr.4160
Tamasang, C. F., & Ngwome, G. F. (2018). In K. Yogo (Ed.), REDD+ implementation in Cameroon's environmental law: The role of indigenous peoples and local communities. https://www.jstor.org/stable/pdf/j.ctv941sr6.48.pdf
Ty, S., Sasaki, N., Ahmad, A. H., & Zainal, A. Z. (2011). REDD development in Cambodia–potential carbon emission reductions in a REDD project. FORMATH Research Society, 10, 1–23. https://doi.org/10.15684/formath.10.1
Valente, R. D. O. A., & Vettorazzi, C. A. (2008). Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecology and Management, 256(6), 1408–1417. https://doi.org/10.1016/j.foreco.2008.07.006
Vieilledent, G., Grinand, C., & Vaudry, R. (2013). Forecasting deforestation and carbon emissions in tropical developing countries facing demographic expansion: A case study in Madagascar. Ecology and Evolution, 3(6), 1702–1716. https://doi.org/10.1002/ece3.550
Wei, W., Gao, Y., Huang, J., & Gao, J. (2020). Exploring the effect of basin land degradation on lake and reservoir water quality in China. Journal of Cleaner Production, 268, e122249. https://doi.org/10.1016/j.jclepro.2020.122249
World Bank., Ecofys., & Vivid Economics. (2017). State and trends of carbon pricing 2017. World Bank. Retrieved from https://openknowledge.worldbank
Yanai, A. M., Fearnside, P. M., Graca, P. M. L. D. A., & Nogueira, E. M. (2012). Avoided deforestation in Brazilian Amazonia: Simulating the effect of the Juma Sustainable Development Reserve. Forest Ecology and Management, 282, 78–91. https://doi.org/10.1016/j.foreco.2012.06.029