Abeli T et al (2022) On farm plant reintroduction: a decision framework for plant conservation translocation in EU agro-ecosystems. J Nat Conserv 65: 126113. https://doi.org/10.1016/ j.jnc.2021.126113
Agrilyst (2017) State of indoor farming. Available at: https://artemisag.com/wp-content/uploads/ 06/stateofindoorfarming-report-2017.pdf
Appolloni E et al (2022) Beyond vegetables: effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. J Sci Food Agric 102(2): 472-487. https://doi.org/10.1002/jsfa.11513
Avgoustaki DD, Xydis G (2020a) How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety? Adv Food Secur Sustain 5: 1-51. https://doi.org/ 10.1016/bs.af2s.2020.08.002
Avgoustaki DD, Xydis G (2020b) Indoor vertical farming in the urban nexus context: business growth and resource savings. Sustainability 12(5). https://doi.org/10.3390/su12051965
Bae J-H, Park S-Y, Oh M-M (2017) Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting. Hortic Environ Biotechnol 58(4): 357-366. https://doi.org/10.1007/s13580-017-0331-x
Bafort F et al (2022) The agro-economic feasibility of growing the medicinal plant Euphorbia peplus in a modified vertical hydroponic shipping container. Horticulturae 8. https://doi.org/ 10.3390/horticulturae8030256
Bafort F, Bouhadada A, Ancion N, Crutzen N, Haïssam JM (2023) Optimization of hydroponic production of the medicinal plants Euphorbia peplus and Artemisia annua in container. Acta Hortic 1369: 171-178. https://doi.org/10.17660/ActaHortic.2023.1369.21
Balabanova V, Vitkova A (2010) Peculiarities in ontogenesis of arnica Montana L. in Bulgaria. Comptes Rendus de L’Academie Bulgare des Sciences 63(9): 1301-1306. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958000334&partnerID=40&md5=2aae6bafab20e676a2e523f3c3643fee
Banerjee C, Adenaeuer L (2014) Up, up and away! The economics of vertical farming. J Agric Stud 2(1): 40-60
Bar-Tal A et al (2019) Chapter 7-inorganic and synthetic organic components of soilless culture and potting mixtures. In: Raviv M, Lieth JH, Bar-Tal A (eds) Soilless culture, 2nd edn. Elsevier, Boston, pp 259-301. https://doi.org/10.1016/B978-0-444-63696-6.00007-4
Barbosa GL et al (2015) Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int J Environ Res Public Health 12(6): 6879-6891. https://doi.org/10.3390/ijerph120606879
Baumont de Oliveira FJ, Ferson S, Dyer RAD (2022) How high is high enough? Assessing financial risk for vertical farms using imprecise probability. Sustainability 14. https://doi.org/ 10.3390/su14095676
Bian Z-H et al (2016) Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J Amer Soc Hort Sci 141(2): 186-195. https://doi.org/10.21273/JASHS.14L2.186
Bullock P (2005) Climate change impacts. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 254-262. https://doi.org/10.1016/B0-12-348530-4/00089-8
Castillo JM et al (2022) Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Sci Hortic 301: 111136. https://doi.org/10.1016/j.scienta.2022.111136
Chang J-D et al (2016) Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds. J Plant Physiol 196-197: 41-52. https://doi.org/10.1016/ j.jplph.2016.02.020
Chen C-C et al (2020) Led lights affecting morphogenesis and isosteroidal alkaloid contents in fritillaria cirrhosa d. Don-an important chinese medicinal herb. Plan Theory 9(10): 1-15. https://doi.org/10.3390/plants9101351
Choi J et al (2022) Effect of far-red and UV-B light on the growth and ginsenoside content of ginseng (Panax ginseng C. A. Meyer) sprouts aeroponically grown in plant factories. Hortic Environ Biotechnol 63(1): 77-87. https://doi.org/10.1007/s13580-021-00380-9
Chrysargyris A, Tzortzakis N (2021) Tailor-made hydroponic recipes for the production of high quality medicinal and aromatic plants. Acta Hortic 1321: 87-94. https://doi.org/10.17660/ ActaHortic.2021.1321.11
Cipollini D, Walters D, Voelckel C (2017) Costs of resistance in plants: from theory to evidence. Annual Plant Rev Online: 263-307. https://doi.org/10.1002/9781119312994.apr0512
Ciriello M et al (2022) Differential response to NaCl osmotic stress in sequentially harvested hydroponic red and green basil and the role of calcium. Front Plant Sci 13. https://doi.org/ 10.3389/fpls.2022.799213
Copolovici L et al (2022) Antagonist temperature variation affects the photosynthetic parameters and secondary metabolites of Ocimum basilicum L. and Salvia officinalis L. Plan Theory 11(14). https://doi.org/10.3390/plants11141806
Cowan N et al (2022) CEA systems: the means to achieve future food security and environmental sustainability? Front Sustain Food Syst 6. https://doi.org/10.3389/fsufs.2022.891256
Czitrom V (1999) One-factor-at-a-time versus designed experiments. The Am Statist. [American Statistical Association, Taylor & Francis, Ltd.] 53(2): 126-131. https://doi.org/10.2307/ 2685731
Dadhich A et al (2022) Unveiling the interaction of divergent abiotic stresses and their conse-quences in terms of bacosides in Bacopa monnieri (L.) Wettst. J Appl Res Med Aromat Plants 31. https://doi.org/10.1016/j.jarmap.2022.100423
Debusschere T, Boekhout R (2021) When will vertical farming become profitable? CEA 40 Conference, Tech 4.0, Vertical Farming Daily. Available at: https://www.verticalfarmdailycom/ article/9321424/when-will-vertical-farming-become-profitable/. Accessed 6 Aug 2021
DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical indus-try: new estimates of R&D costs. J Health Econ 47: 20-33. https://doi.org/10.1016/ j.jhealeco.2016.01.012
Dou H et al (2018) Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. Hort Science Horts 53(4): 496-503. https://doi.org/ 10.21273/HORTSCI12785-17. Washington, DC: American Society for Horticultural Science
Dou H et al (2020a) Morphological and physiological responses in basil and brassica species to different proportions of red, blue, and green wavelengths in indoor vertical farming. J Amer Soc Hort Sci. Washington, DC: American Society for Horticultural Science 145(4): 267-278. https://doi.org/10.21273/JASHS04927-20
Dou H, Niu G (2020) Chapter 9-plant responses to light. In: Kozai T, Niu G, Takagaki M (eds) Plant factory, 2nd edn. Academic Press, pp 153-166. https://doi.org/10.1016/B978-0-12-816691-8.00009-1
Dou H, Niu G, Gu M (2019) Photosynthesis, morphology, yield, and phytochemical accumulation in basil plants influenced by substituting green light for partial red and/or blue light. Hort Science 54(10): 1769-1776. https://doi.org/10.21273/HORTSCI14282-19
Dou R et al (2020b) Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci Total Environ 701: 134916. https://doi.org/10.1016/ j.scitotenv.2019.134916
EIP-AGRI (2020) Plant-based medicinal and cosmetic group. EIP-AGRI, Agriculture and Inno-vation. Available at: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-plant-based-medicinal-and
FranceAgriMer (2020) L’estimation des externalités produites par la filière des PPAM sur des territoires donnés-juin 2020, November 2020. Available at: https://www.franceagrimer.fr/fam/ content/download/65461/document/EtudeExternalitesPPAM_juin 2020_Com.pdf?version=2
FranceAgriMer (2021) Marchés des plantes à parfum, aromatiques et médicinales-Panorama 2020, November 2021. Available at: https://www.franceagrimer.fr/content/download/67749/ document/20211212_MARCHE_PPAM_2020.pdf. Accessed 2 January 2023
Fukuyama T et al (2017) Effects of ultraviolet a supplemented with red light irradiation on vinblastine production in catharanthus roseus. Environ Control Biol 55(2): 65-69. https:// doi.org/10.2525/ecb.55.65
Fukuyama T, Ohashi-Kaneko K, Watanabe H (2015) Estimation of optimal red light intensity for production of the pharmaceutical drug components, vindoline and catharanthine, contained in Catharanthus roseus (L.) G. Don. Environ Control Biol 53(4): 217-220. https://doi.org/10.2525/ ecb.53.217
Gebrehiwot K (2022) In: Jhariya MK et al (eds) Chapter 3-soil management for food security. Elsevier, pp 61-71. https://doi.org/10.1016/B978-0-12-822976-7.00029-6
Goto E (2012) Plant production in a closed plant factory with artificial lighting. Acta Hortic: 37-49. https://doi.org/10.17660/ActaHortic.2012.956.2
Graamans L et al (2017) Plant factories; crop transpiration and energy balance. Agr Syst 153: 138-147. https://doi.org/10.1016/j.agsy.2017.01.003
Graamans L et al (2018) Plant factories versus greenhouses: comparison of resource use efficiency. Agr Syst 160: 31-43. https://doi.org/10.1016/j.agsy.2017.11.003
Gulmon SL, Mooney HA (1986) Costs of defense and their effects on plant productivity. On the economy of plant form and function: proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983
Hao X et al (2020) An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regul 92(2): 319-331. https://doi.org/10.1007/s10725-020-00641-0
Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress. IntechOpen, Rijeka. https://doi.org/10.5772/54833
Hassan W et al (2022) Improved and sustainable agroecosystem, food security and environ-mental resilience through zero tillage with emphasis on soils of temperate and subtropical climate regions: a review. Int Soil Water Conserv Res 10(3): 530-545. https://doi.org/10.1016/ j.iswcr.2022.01.005
Hohmann J et al (2000) Diterpenoids from Euphorbia peplus. Planta Med 66(3): 291-294. https:// doi.org/10.1055/s-2000-8568
Howes M-JR et al (2020) Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants, People, Planet. John Wiley & Sons, Ltd 2(5): 463-481. https://doi.org/10.1002/ppp3.10138
Hussein RA, El-Anssary AA (2018) In: Builders PF (ed) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. IntechOpen, Rijeka, p Ch. 2. https://doi.org/10.5772/intechopen.76139
Hvezdovâ M et al (2018) Currently and recently used pesticides in central European arable soils. Sci Total Environ 613-614: 361-370. https://doi.org/10.1016/j.scitotenv.2017.09.049
Ibrahim MA et al (2010) Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J Exp Bot 61(6): 1583-1595. https://doi.org/10.1093/jxb/ erq034
Ibrahim MH et al (2014) Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila benth) in response to CO2 and light intensity. Sci World J 2014: 1. https://doi.org/10.1155/2014/360290
Ibrahim MH, Jaafar HZE (2011a) Enhancement of leaf gas exchange and primary metabo-lites under carbon dioxide enrichment up-regulates the production of secondary metabo-lites in labisia puntila seedlings. Molecules 16(5): 3761-3777. https://doi.org/10.3390/ moleculesl6053761
Ibrahim MH, Jaafar HZE (2011b) Involvement of carbohydrate, protein and phenylanine ammonia lyase in up-regulation of secondary metabolites in labisia pumila under various CO2 and N2 levels. Molecules 16(5): 4172-4190. https://doi.org/10.3390/molecules16054172
Ibrahim MH, Jaafar HZE (2017) Impact of carbon dioxide and increasing nitrogen levels on growth, photosynthetic capacity, carbohydrates and secondary metabolites in kacip fatimah (labisia pumila). Annual Res Rev Biol 18(5): 1. https://doi.org/10.9734/ARRB/2017/36540
International Trade Center (n.d.) ITC-trade map. Available at: https://www.trademap.org/. Accessed 3 Jan 2023
Itoh H (2018) Functional plants. Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovations, pp 143-154. https://doi.org/10.1016/B978-0-12-813973-8.00013-0
Kalantari F et al (2018) Opportunities and challenges in sustainability of vertical farming: a review. J Landsc Ecol, Berlin: Sciendo 11(1): 35-60. https://doi.org/10.1515/jlecol-2017-0016
Karimi E, Jaafar HZE, Ghasemzadeh A (2016) Chemical composition, antioxidant and anticancer potential of Labisia pumila variety alata under CO2 enrichment. NJAS-Wagening J Life Sci 78: 85-91. https://doi.org/10.1016/j.njas.2016.05.002
Karimi M, Ahmadi N, Ebrahimi M (2022) Photoreceptor regulation of Hypericum perforatum L. (cv. Topas) flowering under different light spectrums in the controlled environment system. Environ Exp Bot 196: 104797. https://doi.org/10.1016/j.envexpbot.2022.104797
Kim G-S et al (2012) Effects of natural bioactive products on the growth and Ginsenoside contents of Panax ginseng cultured in an aeroponic system. J Ginseng Res 36(4): 430-441. https:// doi.org/10.5142/jgr.2012.36.4.430
Kim H-H et al (2005) Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center. Habitation 10(2): 71-78. https://doi.org/10.3727/ 154296605774791232
Kim W-S et al (2015) Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J Physiol Pharmacol 19(1): 21-27. https://doi.org/ 10.4196/kjpp.2015.19.1.21
Kivimäenpää M et al (2021) Changes in light spectra modify secondary compound concentrations and BVOC emissions of Norway spruce seedlings. Can J For Res 51(9): 1218-1229. https:// doi.org/10.1139/cjfr-2020-0120
Kolega S et al (2020) Nutraceutical profiles of two hydroponically grown sweet basil cultivars as affected by the composition of the nutrient solution and the inoculation with Azospirillum brasilense. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.596000
Kondrat’Ev VM et al (2021) Influence of LED lighting power on basil (Ocimum basilicum L.). IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/ 723/3/032079
Kuo C-H et al (2020) Optimization of light intensity, temperature, and nutrients to enhance the bioactive content of Hyperforin and Rutin in St. John’s Wort. Molecules 25(18). https://doi.org/ 10.3390/molecules25184256
Lam VP, Choi J, Park J (2021) Enhancing growth and glucosinolate accumulation in watercress (Nasturtium officinale l.) by regulating light intensity and photoperiod in plant factories. Agri 11(8). https://doi.org/10.3390/agriculture11080723
Lanoue J et al (2022) Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. Front Plant Sci 13. https:// doi.org/10.3389/fpls.2022.983222
Lee J-Y, Hiyama M et al (2020a) Effects of concentration and temperature of nutrient solution on growth and camptothecin accumulation of ophiorrhiza pumila. Plan Theory 9(6): 1-14. https:// doi.org/10.3390/plants9060793
Lee J-Y, Shimano A et al (2020b) Effects of photosynthetic photon flux density and light period on growth and camptothecin accumulation of ophiorrhiza pumila under controlled environments. J Agric Meteorol 76(4): 180-187. https://doi.org/10.2480/agrmet.D-20-00026
Li M et al (2018) Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Anal Biochem 559: 71-85. https://doi.org/10.1016/ j.ab.2018.08.020
Li X et al (2022) The protective effect of cold acclimation on the low temperature stress of the lotus (Nelumbo nucifera). Hortic Sci 49: 29. https://doi.org/10.17221/62/2020-HORTSCI
Lu N et al (2017) Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00708
Lucini L et al (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic 182: 124-133. https://doi.org/ 10.1016/j.scienta.2014.11.022
Maggini R et al (2021) Effects of NaCl on hydroponic cultivation of Reichardia picroides (L.) Roth. Agronomy 11(11). https://doi.org/10.3390/agronomy11112352
Mao H et al (2019) Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. Growth and photosynthesis. Agronomy 9(12). https://doi.org/10.3390/agronomy9120857
Meng Q, Kelly N, Runkle ES (2019) Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ Exp Bot 162: 383-391. https://doi.org/10.1016/j.envexpbot.2019.03.016
Mesa T et al (2022) Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. J Plant Physiol 268: 153581. https://doi.org/10.1016/ j.jplph.2021.153581
Meyer S et al (2013) Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s-a cross-regional analysis. Divers Distrib. John Wiley & Sons, Ltd 19(9): 1175-1187. https://doi.org/10.1111/ddi.12102
Michael GW, Tay FS, Then YL (2021) Development of automated monitoring system for hydroponics vertical farming. J Phys Conf Series 1844(1): 12024. https://doi.org/10.1088/1742-6596/1844/1/012024. IOP Publishing
Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3): 5312-5337. https://doi.org/10.3390/ijms14035312
Morgan S et al (2011) The cost of drug development: a systematic review. Health Policy 100(1): 4-17. https://doi.org/10.1016/j.healthpol.2010.12.002
Mosaleeyanon K et al (2005) Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s Wort. Plant Sci 169(3): 523-531. https://doi.org/10.1016/ j.plantsci.2005.05.002
Naik PM, Al-Khayri JM (2016) Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotechnol 1(2): 1-7
Nguyen DTP et al (2020) Short-term root-zone temperature treatment enhanced the accumulation of secondary metabolites of hydroponic coriander (Coriandrum sativum L.) grown in a plant factory. Agronomy 10(3). https://doi.org/10.3390/agronomy10030413
Nguyen TKL et al (2022) Optimization of cultivation type and temperature for the production of balloon flower (Platycodon grandiflorum A. DC) sprouts in a plant factory with artificial lighting. Horticulturae 8(4). https://doi.org/10.3390/horticulturae8040315
Niessen W, Chanteux A (2005) Les tableaux de bord et business plan. Edited by Editions des Chambres de Commerce et d’Industrie de Wallonie. EdiproOECD (2013) OECD compendium of agri-environmental indicators. https://doi.org/10.1787/ 9789264186217-en
Orlando M, Trivellini A, Puccinelli M et al (2022a) Increasing the functional quality of Crocus sativus L. by-product (tepals) by controlling spectral composition. Hortic Environ Biotechnol 63(3): 363-373. https://doi.org/10.1007/s13580-021-00407-1
Orlando M, Trivellini A, Incrocci L et al (2022b) The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae 8. https://doi.org/10.3390/horticulturae8030217
Pan S-Y et al (2014) Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med 2014: 525340. https://doi.org/10.1155/2014/525340
Paradiso R, Proietti S (2022) Light-quality manipulation to control plant growth and photomor-phogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED systems. J Plant Growth Regul 41(2): 742-780. https://doi.org/10.1007/s00344-021-10337-y
Park S-Y et al (2016) Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Hortic Environ Biotechnol 57(5): 478-486. https://doi.org/10.1007/s13580-016-1060-2
Park S-Y et al (2020a) Physiologic and metabolic changes in crepidiastrum denticulatum according to different energy levels of UV-B radiation. Int J Mol Sci 21(19): 1-16. https://doi.org/10.3390/ ijms21197134
Park S-Y, Bae J-H, Oh M-M (2020b) Manipulating light quality to promote shoot growth and bioactive compound biosynthesis of Crepidiastrum denticulatum (Houtt.) Pak & Kawano cultivated in plant factories. J Appl Res Med Aromat Plants 16: 100237. https://doi.org/10.1016/ j.jarmap.2019.100237
Pennisi G, Orsini F et al (2019a) Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting. Sci Rep 9(1): 1-11. https:// doi.org/10.1038/s41598-019-50783-z
Pennisi G, Blasioli S et al (2019b) Unraveling the Role of Red: Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front Plant Sci 10. https:// doi.org/10.3389/fpls.2019.00305
Pennisi G et al (2020) Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci Hortic 272: 109508. https://doi.org/ 10.1016/j.scienta.2020.109508
Perreau C (2022) La ferme urbaine Agricool placée en redressement judiciaire. LesE-chos. Available at: https://www.lesechos.fr/start-up/impact/la-ferme-urbaine-agricool-placee-en-redressement-judiciaire-1395891
Ren X et al (2022) Optimization of the yield, total phenolic content, and antioxidant capacity of basil by controlling the electrical conductivity of the nutrient solution. Horticulturae 8(3). https://doi.org/10.3390/horticulturae8030216
Rengasamy N et al (2022) Artificial lighting photoperiod manipulation approach to improve productivity and energy use efficacies of plant factory cultivated Stevia rebaudiana. Agronomy 12(8). https://doi.org/10.3390/agronomy12081787
Sankhuan D et al (2022) Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against plasmodium falciparum. BMC Plant Biol 22(1): 128. https://doi.org/10.1186/s12870-022-03528-6
Sharma R et al (2018) ‘Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO2 regimes. Biotech 8: 267. https://doi.org/10.1007/s13205-018-1292-1
Shimomura M et al (2020) Continuous blue lighting and elevated carbon dioxide concentration rapidly increas echlorogenicacidcontentinyounglettuceplants. SciHortic272: 109550. https://doi.org/10.1016/j.scienta.2020.109550
Sijmonsma A (2019) Swedish vertical farming company ‘Plantagon international’ declares bankruptcy, Hortidaily.com. Available at: https://www.hortidaily.com/article/9075157/ swedish-vertical-farming-company-plantagon-international-bankrupt/
Silberbush M, Ben-Asher J (2001) Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant and Soil 233(1): 59-69. https://doi.org/10.1023/A: 1010382321883
Singh PA et al (2022) An overview of some important deliberations to promote medici-nal plants cultivation. J Appl Res Med Aromat Plants 31: 100400. https://doi.org/10.1016/ j.jarmap.2022.100400
Sipos L et al (2021) Optimization of basil (Ocimum basilicum L.) production in LED light environments-a review. Sci Hortic 289: 110486. https://doi.org/10.1016/j.scienta.2021.110486
Sparks RE, Stwalley RM III (2018) Design and testing of a modified hydroponic shipping container system for urban food production. Int J Appl Agric Sci 4(4): 93-102.
Science Publishing Group Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21(4): 385-395. https://doi.org/10.1046/j.1365-3040.1998.00288.x
Storkey J et al (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc R Soc B Biol Sci 279(1732): 1421-1429. https://doi.org/10.1098/ rspb.2011.1686
Szekely I, Jijakli MH (2022) Bioponics as apromising approach to sustainable agriculture: areview of the main methods for producing organic nutrient solution for hydroponics. Watermark 14. https://doi.org/10.3390/w14233975
Tao S et al (2008) Organochlorine pesticides contaminated surface soil as reemission source in the Haiheplain, China. EnvironSciTechnol42(22): 8395-8400. https://doi.org/10.1021/es8019676
Tarvainen V et al (2005) Temperature and light dependence of the VOC emissions of Scots pine. Atmos Chem Phys 5(4): 989-998. https://doi.org/10.5194/acp-5-989-2005
Tong A-Z et al (2021) Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages. BMC Microbiol 21(1): 18. https://doi.org/10.1186/s12866-020-02081-2
Tsukagoshi S, Shinohara Y (2020) Chapter 14-nutrition and nutrient uptake in soilless culture systems. In: Kozai T, Niu G, Takagaki M (eds) Plant factory, 2nd edn. Academic Press, pp 221-229. https://doi.org/10.1016/B978-0-12-816691-8.00014-5
Twaij BM, Hasan MN (2022) ‘Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol 13: 4-14. https://doi.org/10.3390/ijpb13010003
Tzortzakis N et al (2022) Ammonium to total nitrogen ratio interactive effects with salinity application on Solanum lycopersicum growth, physiology, and fruit storage in a closed hydroponic system. Agronomy 12(2). https://doi.org/10.3390/agronomy12020386
Vanhaelewyn L et al (2020) Ultraviolet radiation from a plant perspective: the plant-microorganism context. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.597642
Vera M et al (2020) Living at the edge: population differentiation in endangered Arnica Montana from NW Iberian Peninsula. Plant Syst Evol 306(2). https://doi.org/10.1007/s00606-020-01673-9
VerticalFarmDaily.com (2021) Not possible to market our vertically grown vegetables in a financially attractive way, VerticalFarmDaily. Available at: https://www.verticalfarmdaily.com/ article/9349889/not-possible-to-market-our-vertically-grown-vegetables-in-a-financially-attractive-way/. Accessed 31 Aug 2021
Weremczuk-JeZyna I et al (2021) The protective function and modification of secondary metabolite accumulation in response to light stress in dracocephalum forrestii shoots. Int J Mol Sci 22(15). https://doi.org/10.3390/ijms22157965
WildMapsFit (2020) European medicinal and aromatic plant (MAP) farming. Processing and Training Alliance. Available at: https://wildmapsfit.eu/wp-content/uploads/2022/04/D2-Market-Analysis-of-Wild-MAP.pdf
World Health Assembly, 56 (2003) Traditional medicine: report by the secretariat. Geneva PP-Geneva: World Health Organization. Available at: https://apps.who.int/iris/handle/10665/78244
World Health Organization (2019) WHO global report on traditional and complementary medicine 2019. World Health Organization, Geneva PP-Geneva. Available at: https://apps.who.int/iris/ handle/10665/312342
World Health Organization (2022) Universal health coverage. Available at: https://www.who.int/ health-topics/universal-health-coverage#tab=tab_1. Accessed 21 Oct 2022
Xu W et al (2021) Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus l.) in plant factories. Plan Theory 10(6). https:// doi.org/10.3390/plants10061203
Yamori W (2020) Chapter 12-photosynthesis and respiration. In: Kozai T, Niu G, Takagaki M (eds) Plant factory, 2nd edn. Academic Press, pp 197-206. https://doi.org/10.1016/B978-0-12-816691-8.00012-1
Yang L et al (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4). https://doi.org/10.3390/molecules23040762
Yeo H-J et al (2021) Metabolic analysis of root, stem, and leaf of scutellaria baicalensis plantlets treated with different led lights. Plan Theory 10(5). https://doi.org/10.3390/plants10050940
Yep B, Gale NV, Zheng Y (2020) Aquaponic and hydroponic solutions modulate NaCl-induced stress in drug-type Cannabis sativa L. Front Plant Sci 11. https://doi.org/10.3389/ fpls.2020.01169
Ying Q, Kong Y, Zheng Y (2020) Growth and appearance quality of four microgreen species under light-emitting diode lights with different spectral combinations. HortScience. Washington, DC: American Society for Horticultural Science 55(9): 1399-1405. https://doi.org/10.21273/ HORTSCI14925-20
Yoshida H et al (2022) Changes in the levels of bioactive compounds in red perilla at various leaf positions and ages under different photosynthetic photon flux densities. Acta Hortic: 179-186. https://doi.org/10.17660/ActaHortic.2022.1337.24
Zeidler C, Schubert D, Vrakking V (2017) Vertical farm 2.0: designing an economically feasible vertical farm-a combined European endeavor for sustainable urban agriculture
Zhang M et al (2020) Effects of nutrient fertility on growth and alkaloidal content in Mitragyna speciosa (Kratom). Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.597696
Zhang T, Folta KM (2012) Green light signaling and adaptive response. Plant Signal Behav. Taylor & Francis 7(1): 75-78. https://doi.org/10.4161/psb.7.1.18635
Zhang X et al (2018) Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int J Agric Biol Eng 11(2): 33-40
Zhao J et al (2020) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22(1). https://doi.org/10.3390/ijms22010117
Zhao X et al (2022) Differential physiological, transcriptomic, and metabolomic responses of Paspalum wettsteinii under high-temperature stress. Front Plant Sci 13. https://doi.org/10.3389/ fpls.2022.865608
Zhou Y et al (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of schizonepeta tenuifolia briq. Int J Mol Sci 19(1). https:// doi.org/10.3390/ijms19010252
Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol Biochem 43(10-11): 977-984. https://doi.org/10.1016/j.plaphy.2005.07.013