Cryogenic vacuum; Effect on soils; Isotopic composition; Isotopic effects; Isotopic fractionations; Quartz sand; Soil water; Vacuum distillation; Water effects; Water vapour; Soil Science
Abstract :
[en] Using isotopic spike experiments, we investigated the existence and magnitude of soil-mediated isotopic effects and of the interaction between isotopically distinct soil water pools, both associated in isotopic mismatches between water extracted from soil and soil water taken up by the roots. For this, we applied and compared four established techniques commonly used for the extraction of water (vapor) from soil, three of them relying on destructive soil sampling (cryogenic vacuum distillation, centrifugation, and direct water vapor equilibration), and one being a nondestructive in situ online technique. We observed an almost complete mixing of sequentially added, isotopically distinct water samples to a pure quartz sand (memory effect). The isotopic composition of water held at high soil tension in the pure quartz sand (pF = 2) as well as in a sandy soil (pF = 1.8 and 3) deviated considerably from that of the added water (tension effect). However, we could attribute this deviation not exclusively to a soil-mediated effect but also to methodological shortcomings during our experiments. Finally, we found the following decreasing trend in precision as well as in accuracy of the used water extraction methods: in situ online > centrifugation > direct water vapor equilibration > cryogenic vacuum distillation. The investigation of isotopic fractionation of soil water due to physicochemical processes in soil can be facilitated if the experimental techniques used do not involve isotopic fractionation. In addition, methodological uncertainties and inaccuracies can be minimized by method standardization, increasing the potential of water stable isotopic monitoring in ecohydrological studies.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Deseano Diaz, Paulina Alejandra ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany
Nong, Thai; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany
Brüggemann, Nicolas; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany
Dubbert, Maren; Earth and Life Institute, Environmental Sciences (ELIE), Université Catholique de Louvain (UCL), Louvain‑la‑Neuve, Belgium
Javaux, Mathieu; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany ; Leibniz-Institut fuer Agrarlandschaftsforschung (ZALF), Isotope Biogeochemistry and Gas Fluxes, Muncheberg, Germany
Orlowski, Natalie; Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany ; Institute of Soil Science and Site Ecology, Technische Universität Dresden, Dresden, Germany
Vereecken, Harry ; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany
Rothfuss, Youri ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Institute of Bio‑ and Geosciences, Agrosphere (IBG‑3), Forschungszentrum Julich GmbH, Jülich, Germany
Language :
English
Title :
Insights into tension-mediated and antecedent water effects on soil water isotopic composition
Publication date :
19 October 2023
Journal title :
Vadose Zone Journal
ISSN :
1539-1663
Publisher :
John Wiley and Sons Inc
Volume :
22
Issue :
6
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft FZJ - Forschungszentrum Jülich
Adams, R. E., Hyodo, A., SantaMaria, T., Wright, C. L., Boutton, T. W., & West, J. B. (2020). Bound and mobile soil water isotope ratios are affected by soil texture and mineralogy, whereas extraction method influences their measurement. Hydrological Processes, 34, 991–1003. https://doi.org/10.1002/hyp.13633
Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: The analysis of method comparison studies. Journal of the Royal Statistical Society, 32(3), 307–317.
Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., & Louvat, D. (1995). Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. Journal of Hydrology, 168, 159–171. https://doi.org/10.1016/0022-1694(94)02636-P
Bland, J. M., & Altman, D. G. (1996). Statistics notes: Measurement error and correlation coefficients. BMJ, 312(1654), 41. https://doi.org/10.1136/bmj.313.7048.41
Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8, 135–160. https://doi.org/10.1002/sim.5955
Bowers, W. H., Mercer, J. J., Pleasants, M. S., & Williams, D. G. (2020). A combination of soil water extraction methods quantifies the isotopic mixing of waters held at separate tensions in soil. Hydrology and Earth System Sciences, 24(8), 4045–4060. https://doi.org/10.5194/hess-24-4045-2020
Bowling, D. R., Schulze, E. S., & Hall, S. J. (2017). Revisiting streamside trees that do not use stream water: Can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source? Ecohydrology, 10(1), 01–12. https://doi.org/10.1002/eco.1771
Brooks, R. J., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 3, 100–104. https://doi.org/10.1038/ngeo722
De Smedt, F., & Wierenga, P. J. (1979). A generalized solution for solute flow in soils with mobile and immobile water. Water Resources Research, 15(5), 1137–1141.
Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant transpiration from groundwater and streamflow. Nature, 525, 91–94. https://doi.org/10.1038/nature14983
Figueroa-Johnson, M. A., Tindall, J. A., & Friedel, M. (2007). A comparison of 18Oδ composition of water extracted from suction lysimeters, centrifugation, and azeotropic distillation. Water, Air, and Soil Pollution, 184(1–4), 63–75. https://doi.org/10.1007/s11270-007-9399-8
Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., & Himmelsbach, T. (2016). In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: A soil water balance. Hydrology and Earth System Sciences, 20(2), 715–731. https://doi.org/10.5194/hess-20-715-2016
Gaj, M., Lamparter, A., Woche, S. K., Bachmann, J., McDonnell, J. J., & Stange, C. F. (2019). The role of matric potential, solid interfacial chemistry, and wettability on isotopic equilibrium fractionation. Vadose Zone Journal, 18, 01–11. https://doi.org/10.2136/vzj2018.04.0083
Gaj, M., & McDonnell, J. J. (2019). Possible soil tension controls on the isotopic equilibrium fractionation factor for evaporation from soil. Hydrological Processes, 33(11), 1629–1634. https://doi.org/10.1002/hyp.13418
Gaudet, J. P., Jégat, H., Vachaud, G., & Wierenga, P. J. (1977). Soil Science Society of America. Soil Science Society of America Journal, 41(4), 665–671. https://doi.org/10.2136/sssaj1940.036159950004000c0132x
Geris, J., Tetzlaff, D., McDonnell, J., Anderson, J., Paton, G., & Soulsby, C. (2015). Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques. Hydrological Processes, 29, 5139–5152. https://doi.org/10.1002/hyp.10603
Gerke, H. H., & van Genuchten, M. T. (1993). A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29(2), 305–319. https://doi.org/10.1029/92WR02339
Goebel, T. S., & Lascano, R. J. (2012). System for high throughput water extraction from soil material for stable isotope analysis of water. Journal of Analytical Sciences, Methods and Instrumentation, 2(04), 203–207. https://doi.org/10.4236/jasmi.2012.24031
Hsieh, J. C. C., Savin, S. M., Kelly, E. F., & Chadwick, O. A. (1998). Measurement of soil-water δ18O values by direct equilibration with CO2. Geoderma, 82, 255–268. https://doi.org/10.1016/S0016-7061(97)00104-3
Koeniger, P., Marshall, J. D., Link, T., & Mulch, A. (2011). An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Communications in Mass Spectrometry, 25, 3041–3048. https://doi.org/10.1002/rcm.5198
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., & Dubbert, M. (2020). Water stable isotopes in ecohydrological field research: Comparison between in situ and destructive monitoring methods to determine soil water isotopic signatures. Frontiers in Plant Science, 11(April), 387. https://doi.org/10.3389/fpls.2020.00387
Landon, M. K., Delin, G. N., Komor, S. C., & Regan, C. P. (1999). Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone. Journal of Hydrology, 224, 45–54.
McDonnell, J. J. (2014). The two water worlds hypothesis: Ecohydrological separation of water between streams and trees? Wiley Interdisciplinary Reviews: Water, 1, 323–329. https://doi.org/10.1002/wat2.1027
Meißner, M., Köhler, M., Schwendenmann, L., Hölscher, D., & Dyckmans, J. (2014). Soil water uptake by trees using water stable isotopes (δ2H and δ18O)—A method test regarding soil moisture, texture and carbonate. Plant and Soil, 367, 327–335. https://doi.org/10.1007/s11104-013-1970-z
Millar, C., Janzen, K., Nehemy, M. F., Koehler, G., Hervé-Fernández, P., Wang, H., Orlowski, N., Barbeta, A., & McDonnell, J. J. (2022). On the urgent need for standardization in isotope-based ecohydrological investigations. Hydrological Processes, 36(10), 01–16. https://doi.org/10.1002/hyp.14698
Newberry, S. L., Nelson, D. B., & Kahmen, A. (2017). Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis. Ecohydrology, 10(8), 01–10. https://doi.org/10.1002/eco.1892
Newberry, S. L., Prechsi, U. E., Pace, M., & Kahmen, A. (2017). Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools. Isotopes in Environmental and Health Studies, 53(4), 368–381.
Oerter, E. J., & Bowen, G. (2017). In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems. Ecohydrology, 10, e1841. https://doi.org/10.1002/eco.1841
Oerter, E. J., Perelet, A., Pardyjak, E., & Bowen, G. (2017). Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput. Rapid Communications in Mass Spectrometry, 31(1), 75–84. https://doi.org/10.1002/rcm.7768
Orlowski, N., & Breuer, L. (2020). Sampling soil water along the pF curve for δ2H and δ18O analysis. Hydrological Processes, 34(25), 4959–4972. https://doi.org/10.1002/hyp.13916
Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J., Gallagher, B., Gralher, B., Herbstritt, B., Hervé-Fernández, P., Hissler, C., Koeniger, P., Legout, A., Macdonald, C. J., Oyarzún, C., Redelstein, R., Seidler, C., …McDonnell, J. J. (2018). Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrology and Earth System Sciences, 22, 3619–3637.
Orlowski, N., Breuer, L., & McDonnell, J. J. (2016). Critical issues with cryogenic extraction of soil water for stable isotope analysis. Ecohydrology, 9(1), 3–10. https://doi.org/10.1002/eco.1722
Orlowski, N., Frede, H. G., Brüggemann, N., & Breuer, L. (2013). Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis. Journal of Sensors and Sensor Systems, 2(2), 179–193. https://doi.org/10.5194/jsss-2-179-2013
Orlowski, N., Pratt, D. L., & McDonnell, J. J. (2016). Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrological Processes, 30, 3434–3449.
Penna, D., Geris, J., Hopp, L., & Scandellari, F. (2020). Water sources for root water uptake: Using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems. Agriculture, Ecosystems & Environment, 291, 01–30. https://doi.org/10.1016/j.agee.2019.106790
Quade, M., Klosterhalfen, A., Graf, A., Brüggemann, N., Hermes, N., Vereecken, H., & Rothfuss, Y. (2019). In-situ monitoring of soil water isotopic composition for partitioning of evapotranspiration during one growing season of sugar beet (Beta vulgaris). Agricultural and Forest Meteorology, 266–267(December 2018), 53–64. https://doi.org/10.1016/j.agrformet.2018.12.002
Richard, T., Mercury, L., Massault, M., & Michelot, J. L. (2007). Experimental study of D/H isotopic fractionation factor of water adsorbed on porous silica tubes. Geochimica et Cosmochimica Acta, 71(5), 1159–1169. https://doi.org/10.1016/j.gca.2006.11.028
Rothfuss, Y., & Javaux, M. (2017). Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences, 14, 2199–2224. https://doi.org/10.5194/bg-14-2199-2017
Rothfuss, Y., Vereecken, H., & Brüggemann, N. (2013). Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy. Water Resources Research, 49, 3747–3755. https://doi.org/10.1002/wrcr.20311
Sprenger, M., Herbstritt, B., & Weiler, M. (2015). Established methods and new opportunities for pore water stable isotope analysis. Hydrological Processes, 29, 5174–5192. https://doi.org/10.1002/hyp.10643
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell, C. P. J., Snelgrove, J., Weiler, M., & Soulsby, C. (2018). Measuring and modeling stable isotopes of mobile and bulk soil water. Vadose Zone Journal, 17(1), 01–18. https://doi.org/10.2136/vzj2017.08.0149
Thielemann, L., Gerjets, R., & Dyckmans, J. (2019). Effects of soil-bound water exchange on the recovery of spike water by cryogenic water extraction. Rapid Communications in Mass Spectrometry, 33(5), 405–410. https://doi.org/10.1002/rcm.8348
Tsuruta, K., Yamamoto, H., Katsuyama, M., Kosugi, Y., Okumura, M., & Matsuo, N. (2019). Effects of cryogenic vacuum distillation on the stable isotope ratios of soil water. Hydrological Research Letters, 13(1), 01–6. https://doi.org/10.3178/hrl.13.1
Walker, G. R., Woods, P. H., & Allison, G. B. (1994). Interlaboratory comparison of methods to determine the stable isotope composition of soil water. Chemical Geology, 111(1–4), 297–306. https://doi.org/10.1016/0009-2541(94)90096-5
Wassenaar, L., Hendry, M. J., Chostner, V. L., & Lis, G. P. (2008). High resolution pore water δ2H and δ18O measurements by laser spectroscopy. Environmental Science & Technology, 42(24), 9262–9267.
Wen, M., Si, B., Lu, Y., & Wang, H. (2021). Water recovery rate and isotopic signature of cryogenic vacuum extracted spiked soil water following oven-drying at different temperatures. Hydrological Processes, 35(6), e14248. https://doi.org/10.1002/hyp.14248