[en] To protect biodiversity we must understand its structure and composition including the bacteria and microparasites associated with wildlife, which may pose risks to human health. However, acquiring this knowledge often presents challenges, particularly in areas of high biodiversity where there are many undescribed and poorly studied species and funding resources can be limited. A solution to fill this knowledge gap is sampling roadkill (animals that die on roads as a result of collisions with circulating vehicles). These specimens can help characterize local wildlife and their associated parasites with fewer ethical and logistical challenges compared to traditional specimen collection. Here we test this approach by analyzing 817 tissue samples obtained from 590 roadkill vertebrate specimens (Amphibia, Reptilia, Aves and Mammalia) collected in roads within the Tropical Andes of Ecuador. First, we tested if the quantity and quality of recovered DNA varied across roadkill specimens collected at different times since death, exploring if decomposition affected the potential to identify vertebrate species and associated microorganisms. Second, we compared DNA stability across taxa and tissues to identify potential limitations and offer recommendations for future work. Finally, we illustrate how these samples can aid in taxonomic identification and parasite detection. Our study shows that sampling roadkill can help study biodiversity. DNA was recovered and amplified (allowing species identification and parasite detection) from roadkill even 120 hours after death, although risk of degradation increased overtime. DNA was extracted from all vertebrate classes but in smaller quantities and with lower quality from amphibians. We recommend sampling liver if possible as it produced the highest amounts of DNA (muscle produced the lowest). Additional testing of this approach in areas with different environmental and traffic conditions is needed, but our results show that sampling roadkill specimens can help detect and potentially monitor biodiversity and could be a valuable approach to create biobanks and preserve genetic data.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Coba-Males, Manuel Alejandro ; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
Medrano-Vizcaíno, Pablo ; Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom ; Universidad Regional Amazónica IKIAM, Grupo de Investigación Población y Ambiente, Tena, Ecuador ; Red Ecuatoriana para el Monitoreo de Fauna Atropellada-REMFA, Quito, Ecuador
Enríquez, Sandra; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
Brito-Zapata, David; Red Ecuatoriana para el Monitoreo de Fauna Atropellada-REMFA, Quito, Ecuador ; Instituto iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Quito, Ecuador
Martin-Solano, Sarah; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
Ocaña-Mayorga, Sofía ; Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
Carrillo Bilbao, Gabriel ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) ; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
Narváez, Wilmer; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
Salas, Jaime Antonio ; Facultad de Ciencias Naturales, Carrera de Biología, Universidad de Guayaquil, Guayaquil, Ecuador
Arrivillaga-Henríquez, Jazzmín; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
González-Suárez, Manuela ; Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom
Poveda, Ana ; Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
Language :
English
Title :
From roads to biobanks: Roadkill animals as a valuable source of genetic data.
Bischof R, Steyaert SMJG, Kindberg J. Caught in the mesh: roads and their network-scale impediment to animal movement. Ecography. 2017; 40: 1369-1380. https://doi.org/10.1111/ecog.02801
Grilo C, Borda-de-Água L, Beja P, Goolsby E Soanes K, le Roux A, et al. Conservation threats from roadkill in the global road network. Global Ecology and Biogeography. 2021; 30: 2200-2210. https://doi. org/10.1111/geb.13375
Vaeokhaw S, Ngoprasert D, Swatdipong A, Gale GA, Klinsawat W, Vichitsoonthonkul T. Effects of a highway on the genetic diversity of Asiatic black bears. Ursus. 2020; 2020: 1-15. https://doi.org/10. 2192/URSUS-D-18-00013.2
Schwartz ALW, Shilling FM, Perkins SE. The value of monitoring wildlife roadkill. European Journal of Wildlife Research. 2020; 66: 1-12. https://doi.org/10.1007/s10344-019-1357-4
Allio R, Tilak M-K, Scornavacca C, Avenant NL, Kitchener AC, Corre E et al. High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. eLife. 2021; 10: 1-77. https://doi.org/10.7554/eLife.63167 PMID: 33599612
Motley JL, Stamps BW, Mitchell CA, Thompson AT, Cross J, You J, et al. Opportunistic Sampling of Roadkill as an Entry Point to Accessing Natural Products Assembled by Bacteria Associated with Nonanthropoidal Mammalian Microbiomes. Journal of Natural Products. 2017; 80: 598-608. https://doi.org/ 10.1021/acs.jnatprod.6b00772 PMID: 28335605
Pendl H, Hernández-Lara C, Kubacki J, Borel N, Albini S, Valkiunas G. Exo-erythrocytic development of Plasmodium matutinum (lineage pLINN1) in a naturally infected roadkill fieldfare Turdus pilaris. Malaria Journal. 2022; 21: 1-13. https://doi.org/10.1186/s12936-022-04166-x PMID: 35570274
Campbell SJ, Ashley W, Gil-Fernandez M, Newsome TM, Di Giallonardo F, Ortiz-Baez AS, et al. Red fox viromes in urban and rural landscapes. Virus Evolution. 2020; 6: 1-11. https://doi.org/10.1093/ve/ veaa065 PMID: 33365150
Szekeres S, Docters van Leeuwen A, Tóth E Majoros G, Sprong H, Földvári G. Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transboundary and Emerging Diseases. 2019; 66: 277-286. https://doi.org/10.1111/tbed.13019 PMID: 30230270
Arrivillaga J, Caraballo V. Medicina de la Conservación. Revista Biomé dica. 2009; 20: 55-67.
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Frontiers in Veterinary Science. 2018; 5: 1-13. https:// doi.org/10.3389/fvets.2018.00014 PMID: 29484301
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals. 2022; 12: 1-24. https://doi.org/10.3390/ani12131719 PMID: 35804619
Chaves PB, Paes MF, Mendes SL, Strier KB, Louro ID, Fagundes V. Noninvasive genetic sampling of endangered muriqui (Primates, Atelidae): efficiency of fecal DNA extraction. Genetics and Molecular Biology. 2006; 29: 750-754. https://doi.org/10.1590/S1415-47572006000400028
Carrillo-Bilbao G, Navarro JC, Martin-Solano S, Chávez-Larrea MA, Cholota-Iza C, Saegerman C. First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens. 2022; 11: 1-20. https://doi.org/10.3390/ pathogens11121490 PMID: 36558823
Kuhn R, Böllmann J, Krahl K, Bryant IM, Martienssen M. Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis. Data in Brief. 2018; 16: 732-751. https://doi.org/10.1016/j.dib.2017.11. 082 PMID: 29270456
Kuhn R, Böllmann J, Krahl K, Bryant IM, Martienssen M. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods. 2017; 143: 78-86. https://doi.org/10.1016/j.mimet.2017.10.007 PMID: 29056447
Cardoso RM, de Araújo NNSL, Romero GAS, Souza TTCM, Dietrich AG, Mendes JD, et al. Expanding the knowledge about Leishmania species in wild mammals and dogs in the Brazilian savannah. Parasites & Vectors. 2015; 8: 1-8. https://doi.org/10.1186/s13071-015-0780-y PMID: 25889365
Azami-Conesa I, Gómez-Muñoz MT, Martínez-Díaz RA. A Systematic Review (1990-2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms. 2021; 9: 1101. https://doi.org/10.3390/ microorganisms9051101 PMID: 34065456
Cardoso L, Schallig H, Persichetti MF, Pennisi MG. New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other Than Dogs. Pathogens. 2021; 10: 307. https://doi. org/10.3390/pathogens10030307 PMID: 33800782
Chen H, Li J, Zhang J, Guo X, Liu J, He J, et al. Multi-locus characterization and phylogenetic inference of Leishmania spp. in snakes from Northwest China. Chiang T-Y, editor. PLOS ONE. 2019; 14: e0210681. https://doi.org/10.1371/journal.pone.0210681 PMID: 31022192
Mendoza-Roldan JA, Latrofa MS, Tarallo VD, Manoj RRS, Bezerra-Santos MA, Annoscia G, et al. Leishmania spp. in Squamata reptiles from the Mediterranean basin. Transboundary and Emerging Diseases. 2022; 69: 2856-2866. https://doi.org/10.1111/tbed.14438 PMID: 34951929
Medrano-Vizcaíno P, Espinosa S. Geography of roadkills within the Tropical Andes Biodiversity Hotspot: Poorly known vertebrates are part of the toll. Biotropica. 2021; 53: 820-830. https://doi.org/10. 1111/btp.12938
Medrano-Vizcaíno P, Grilo C, Brito-Zapata D, González-Suárez M (2023) Landscape and road features linked to wildlife mortality in the Amazon. Biodiversity and Conservation https://doi.org/10.1007/s10531- 023-02699-4
Tozzo P, Scrivano S, Sanavio M, Caenazzo L. The role of DNA degradation in the estimation of postmortem interval: A systematic review of the current literature. International Journal of Molecular Sciences. 2020; 21: 3540. https://doi.org/10.3390/ijms21103540 PMID: 32429539
Stotesbury T, Cossette ML, Newell-Bell T, Shafer ABA. An Exploratory Time Since Deposition Analysis of Whole Blood Using Metrics of DNA Degradation and Visible Absorbance Spectroscopy. Pure and Applied Geophysics. 2021; 178: 735-743. https://doi.org/10.1007/s00024-020-02494-0
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. In: R Foundation for Statistical Computing, Vienna, Austria. [Internet]. 2021 [cited 26 Oct 2022]. Available: https://www.r-project.org/
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software. 2014; 67. https://doi.org/10.18637/jss.v067.i01
Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software. 2021; 6: 3139. https://doi.org/10.21105/joss.03139
Lenth R V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.4-1. Comprehensive R Archive Network (CRAN); 2021.
Ivanova N V., Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes. 2007; 7: 544-548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
Egan SL, Ruiz-Aravena M, Austen JM, Barton X, Comte S, Hamilton DG, et al. Blood Parasites in Endangered Wildlife-Trypanosomes Discovered during a Survey of Haemoprotozoa from the Tasmanian Devil. Pathogens. 2020; 9: 873. https://doi.org/10.3390/pathogens9110873 PMID: 33114071
Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN. DNA barcoding of Neotropical bats: Species identification and discovery within Guyana: Barcoding. Molecular Ecology Notes. 2007; 7: 184-190. https://doi.org/10.1111/j.1471-8286.2006.01657.x
Modabberi F, Ghadimi SN, Shahriarirad R, Nadimi E Karbalay-doust S, Rashidi S, et al. Stereological analysis of liver, spleen and bone of Leishmania infantum-experimentally infected hamsters. Experimental Parasitology. 2021; 228: 108137. https://doi.org/10.1016/j.exppara.2021.108137 PMID: 34298076
Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series. 1999; 41: 95-98.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, editor. Molecular Biology and Evolution. 2021;38: 3022-3027. https://doi.org/10.1093/molbev/ msab120
Sayers EW, Bolton EE Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Research. 2022; 50: D20-D26. https://doi. org/10.1093/nar/gkab1112 PMID: 34850941
Arrivillaga-Henríquez J, Enríquez S, Romero V, Echeverría G, Pérez-Barrera J, Poveda A, et al. Ecoepidemiological aspects, natural detection and molecular identification of Leishmania spp. in Lutzomyia reburra, Lutzomyia barrettoi majuscula and Lutzomyia trapidoi. Biomé dica. 2017; 37. https://doi.org/10. 7705/biomedica.v37i0.3536 PMID: 29161481
Kato H, Gomez EA, Martini-Robles L, Muzzio J, Velez L, Calvopiña M, et al. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis. Fujiwara RT, editor. PLOS Neglected Tropical Diseases. 2016; 10: 1-10. https://doi.org/10.1371/journal.pntd. 0004844 PMID: 27410039
Hashiguchi Y, Velez LN, Villegas N V., Mimori T, Gomez EAL, Kato H. Leishmaniases in Ecuador: Comprehensive review and current status. Acta Tropica. 2017; 166: 299-315. https://doi.org/10.1016/j. actatropica.2016.11.039 PMID: 27919688
Medrano-Vizcaíno P, Brito-Zapata D, Rueda-Vera A, Jarrín V P, García-Carrasco J-M, Medina D, et al. First national assessment of wildlife mortality in Ecuador: An effort from citizens and academia to collect roadkill data at country scale. Ecology and Evolution. 2023; 13: e9916. https://doi.org/10.1002/ece3. 9916 PMID: 36993143
Medrano-Vizcaíno P, Grilo C, Silva Pinto FA, Carvalho WD, Melinski RD, Schultz ED, et al. Roadkill patterns in Latin American birds and mammals. Global Ecology and Biogeography. 2022; 31: 1756-1783. https://doi.org/10.1111/GEB.13557
Grilo C, Koroleva E Andrásik R, Bíl M, González-Suárez M. Roadkill risk and population vulnerability in European birds and mammals. Frontiers in Ecology and the Environment. 2020; 18: 323-328. https:// doi.org/10.1002/FEE.2216
Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, et al. Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics. 2022; 6: 15-26. https://doi.org/10.3897/mbmg.6.76534
Breton BA, Beaty L, Bennett AM, Kyle CJ, Lesbarrères D, Vilaça ST, et al. Testing the effectiveness of environmental DNA (eDNA) to quantify larval amphibian abundance. Environmental DNA. 2022; 4: 1229-1240. https://doi.org/10.1002/edn3.332
Goldberg CS, Strickler KM, Fremier AK. Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs. Science of The Total Environment. 2018; 633: 695-703. https://doi.org/10.1016/j.scitotenv.2018.02.295 PMID: 29602110
Haggerty CJE Crisman TL, Rohr JR. Effects of forestry-driven changes to groundcover and soil moisture on amphibian desiccation, dispersal, and survival. Ecological Applications. 2019; 29: e01870. https://doi.org/10.1002/eap.1870 PMID: 30737867
Hoffmann EP, Cavanough KL, Mitchell NJ. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche. Conservation Physiology. 2021; 9. https://doi.org/10.1093/conphys/coab027 PMID: 33959292
Hofstetter JR, Zhang A, Mayeda AR, Guscar T, Nurnberger JI, Lahiri DK. Genomic DNA from Mice: A Comparison of Recovery Methods and Tissue Sources. Biochemical and Molecular Medicine. 1997; 62: 197-202. https://doi.org/10.1006/bmme.1997.2637 PMID: 9441873
Repoles BM, Gorospe CM, Tran P, Nilsson AK, Wanrooij PH. The integrity and assay performance of tissue mitochondrial DNA is considerably affected by choice of isolation method. Mitochondrion. 2021; 61: 179-187. https://doi.org/10.1016/j.mito.2021.10.005 PMID: 34728429
Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death & Disease 2017 8:5. 2017; 8: e2805-7. https://doi.org/10.1038/cddis. 2017.167 PMID: 28518148
Koczur LM, Williford D, DeYoung RW, Ballard BM. Bringing back the dead: Genetic data from avian carcasses. Wildlife Society Bulletin. 2017; 41: 796-803. https://doi.org/10.1002/wsb.823
Flaherty BR, Barratt J, Lane M, Talundzic E Bradbury RS. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. Microbiome. 2021; 9: 1. https://doi.org/10.1186/s40168-020-00939-1 PMID: 33388088
Sundar S, Singh OP. Molecular Diagnosis of Visceral Leishmaniasis. Molecular Diagnosis and Therapy. 2018; 22: 443-457. https://doi.org/10.1007/s40291-018-0343-y PMID: 29922885
Medrano-Vizcaíno P, Grilo C, González-Suárez M. Research and conservation priorities to protect wildlife from collisions with vehicles. Biological Conservation. 2023; 280: 109952. https://doi.org/10.1016/J. BIOCON.2023.109952