Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands.
Bark beetle; Forest management; Forest site; Norway spruce; Sentinel-2; Species vulnerability; Time series; Topographic condition; Animals; Plant Bark; Belgium; Remote Sensing Technology; Environmental Monitoring; Norway; France; Disease Outbreaks; Trees; Picea/physiology; Abies; Coleoptera/physiology; Weevils; Management, Monitoring, Policy and Law; Pollution; General Environmental Science; General Medicine
Abstract :
[en] In 2022, Europe emerged from eight of the hottest years on record, leading to significant spruce mortality across Europe. The particularly dry weather conditions of 2018 triggered an outbreak of bark beetles (Ips typographus), causing the loss of thousands of hectares of Norway spruce stands, including in Wallonia and North-eastern France. A methodology for detecting the health status of spruce was developed based on a dense time series of satellite imagery (Sentinel-2). The time series of satellite images allowed the modelling of the spectral response of healthy spruce forests over the seasons: a decrease in photosynthetic activity of the forest canopy causes deviations from this normal seasonal vegetation index trajectory. These anomalies are caused by a bark beetle attack and are detected automatically. The method leads in the production of an annual spruce health map of Wallonia and Grand-Est. The goal of this paper is to assess the damage caused by bark beetle using the resulting spruce health maps. A second objective was to compare the influence of basic variables on the mortality of spruce trees in these two regions. Lasted 6 years (2017-2022), bark beetle has destroyed 12.2% (23,674 ha) of the spruce area in Wallonia and Grand-Est of France. This study area is composed of three bioclimatic areas: Plains, Ardennes and Vosges, which have not been equally affected by bark beetle attacks. The plains were the most affected, with 50% of spruce forests destroyed, followed by the Ardennes, which lost 11.3% of its spruce stands. The Vosges was the least affected bioclimatic area, with 5.6% of spruce stands lost. For the most problematic sites, Norway spruce forestry should no longer be considered.
Gilles, Arthur ✱; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Jonathan, Lisein ✱
Cansell, Juliette ✱; Centre National de la propriété forestière, 54 000, Nancy, France
Latte, Nicolas ✱; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Piedallu, Christian ✱; Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
Claessens, Hugues ✱; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
✱ These authors have contributed equally to this work.
Language :
English
Title :
Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands.
Publication date :
02 February 2024
Journal title :
Environmental Monitoring and Assessment
ISSN :
0167-6369
eISSN :
1573-2959
Publisher :
Springer Science and Business Media LLC, Netherlands
Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Groen, T. A., & Heurich, M. (2018). European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 64, 199–209.
Ali, A. M., Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Heurich, M., Roeoesli, C., Paganini, M., Heiden, U., & Marshall, D. (2021). Canopy chlorophyll content retrieved from time series remote sensing data as a proxy for detecting bark beetle infestation. Remote Sensing Applications: Society and Environment, 22, 100524.
Annila, E. (1969). Influence of temperature upon the development and voltinism of Ips typographus L.(Coleoptera, Scolytidae). Annales Zoologici Fennici, 6(2), 161–208.
Baier, P., Pennerstorfer, J., & Schopf, A. (2007). PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecology and Management, 249(3), 171–186.
Bárta, V., Lukeš, P., & Homolová, L. (2021). Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 100, 102335.
Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., & Bonnet, S. (2018). Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnologie, Agronomie, Société Et Environnement, 22(3), 16.
Bolyn, C., Lejeune, P., Michez, A., & Latte, N. (2022). Mapping tree species proportions from satellite imagery using spectral–spatial deep learning. Remote Sensing of Environment, 280, 113205.
Brunier, L., Delport, F., & Gauquelin, X. (2020). Guide de gestion des crises sanitaires en forêt (p. 184). RMT AFORCE.
Copernicus DEM. (2016). European Digital Elevation Model (EU-DEM), version 1.1, URL https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-demv1, 1.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres, 123(17), 9391–9409.
Dalponte, M., Solano-Correa, Y. T., Frizzera, L., & Gianelle, D. (2022). Mapping a European spruce bark beetle outbreak using Sentinel-2 remote sensing data. Remote Sensing, 14(13), 3135.
Delvaux, J., & Galoux, A. (1962). Les territoires écologiques du Sud-Est belge. Centre d’écologie générale.
Dutrieux, R., Feret, J.-B., Ose, K., & De Boissieu, F. (2021). Package fordead. Portail Data INRAE. 10.15454/4TEO6H DOI: 10.15454/4TEO6H
Faccoli, M., & Bernardinelli, I. (2014). Composition and elevation of spruce forests affect susceptibility to bark beetle attacks: Implications for forest management. Forests, 5(1), 88–102.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., …, Hylander, K. (2021). Forest microclimates and climate change: Importance drivers and future research agenda. Global Change Biology, 27(11), 2279‑2297.
Gazol, A., Camarero, J. J., Anderegg, W. R. L., & Vicente-Serrano, S. M. (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26(2), 166–176.
Grabska, E., Hostert, P., Pflugmacher, D., & Ostapowicz, K. (2019). Forest stand species mapping using the Sentinel-2 time series. Remote Sensing, 11(10), 1197.
Guinier, Ph. (1959). Trois Conifères de la flore vosgienne. Bulletin De La Société Botanique De France, 106(sup2), 168–183.
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207.
Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K. F., Schelhaas, M.-J., Svoboda, M., Viiri, H., & Seidl, R. (2021). Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Current Forestry Reports, 7(3), 138–165.
IGN-Inventaire forestier national français. (2022). Données brutes, Campagnes annuelles 2005 et suivantes. https://inventaire-forestier.ign.fr/dataIFN/, site consulted on 20/04/2023.
Jactel, H., Moreira, X., & Castagneyrol, B. (2021). Tree diversity and forest resistance to insect pests: Patterns, mechanisms, and prospects. Annual Review of Entomology, 66(1), 277–296.
Jakuš, R. (1995). Bark beetle (Col., Scolytidae) communities and host and site factors on tree level in Norway spruce primeval natural forest. Journal of Applied Entomology, 119(1–5), 643–651.
Jönsson, A. M., Appelberg, G., Harding, S., & Bärring, L. (2009). Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle. Ips Typographus. Global Change Biology, 15(2), 486–499.
Kamińska, A., Lisiewicz, M., Kraszewski, B., & Stereńczak, K. (2021). Mass outbreaks and factors related to the spatial dynamics of spruce bark beetle (Ips typographus) dieback considering diverse management regimes in the Białowieża forest. Forest Ecology and Management, 498, 119530. 10.1016/j.foreco.2021.119530 DOI: 10.1016/j.foreco.2021.119530
Kautz, M., Schopf, R., & Imron, M. A. (2014). Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system. Ecological Modelling, 273, 264–276.
König, S., Thonfeld, F., Förster, M., Dubovyk, O., & Heurich, M. (2023). Assessing combinations of Landsat, Sentinel-2 and Sentinel-1 time series for detecting bark beetle infestations. Giscience & Remote Sensing, 60(1), 2226515. 10.1080/15481603.2023.2226515 DOI: 10.1080/15481603.2023.2226515
Köstler, J. N., Brückner, E., & Bibelriether, H. (1968). Die Wurzeln der Waldbäume (p. 284). Parey
Kuhn, A., Hautier, L., & San Martin, G. (2022). Do pheromone traps help to reduce new attacks of Ips typographus at the local scale after a sanitary cut? PeerJ, 10, e14093.
Lausch, A., Fahse, L., & Heurich, M. (2011). Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. Forest Ecology and Management, 261(2), 233–245. 10.1016/j.foreco.2010.10.012 DOI: 10.1016/j.foreco.2010.10.012
Lejeune, P., Michez, A., Perin, J., Gilles, A., Latte, N., Ligot, G., Lisein, J., & Claessens, H. (2022). L’épicéa wallon: État de la ressource en 2021. Silva Belgica, 2, 7.
Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. 10.1126/science.1156831 DOI: 10.1126/science.1156831
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709.
Lisein, J., Michez, A., Claessens, H., & Lejeune, P. (2015). Discrimination of deciduous tree species from time series of unmanned aerial system imagery. PLoS ONE, 10(11), e0141006.
Löw, M., & Koukal, T. (2020). Phenology modelling and forest disturbance mapping with sentinel-2 time series in Austria. Remote Sensing 12, 24(4191)
Ma, M., Liu, J., Liu, M., Zeng, J., & Li, Y. (2021). Tree species classification based on Sentinel-2 imagery and random forest classifier in the eastern regions of the Qilian Mountains. Forests, 12(12), 1736.
Marini, L., Ayres, M. P., Battisti, A., & Faccoli, M. (2012). Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115(2), 327–341.
Modrzyński, J. (2007). Outline of Ecology. 11.1. Ecology. In M. G. Tjoelker, A. Boratyński, & W. Bugała (Eds.), Biology and Ecology of Norway Spruce (pp. 195–221). Forestry Sciences.
Müller, M., Olsson, P.-O., Eklundh, L., Jamali, S., & Ardö, J. (2022). Features predisposing forest to bark beetle outbreaks and their dynamics during drought. Forest Ecology and Management, 523, 120480.
Nardi, D., Jactel, H., Pagot, E., Samalens, J.-C., & Marini, L. (2023). Drought and stand susceptibility to attacks by the European spruce bark beetle: A remote sensing approach. Agricultural and Forest Entomology, 25(1), 119–129.
Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P., Pennerstorfer, J., Rosner, S., Kikuta, S., Schume, H., & Schopf, A. (2015). Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist, 205(3), 1128–1141.
Netherer, S., Kandasamy, D., Jirosová, A., Kalinová, B., Schebeck, M., & Schlyter, F. (2021). Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. Journal of Pest Science, 94(3), 591–614.
Noirfalise, A., & Thill, A. (1975). Spruce woods and their pedobotanical types in Ardenne (Belgium). Beiträge Zur Naturkundlichen Forschung in Südwestdeutschland, 34, 251–257.
Nystedt, B., Street, N. R., & Wetterbom. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451), 579–584.
Perin, J. (2023). Composition, structure and localization of permanent forest sampling plots recently inventoried in spruce forest stands [Dataset]. Service Public de Wallonie, Inventaire Permanent des Ressources Forestières de Wallonie. http://iprfw.spw.wallonie.be/.
Piedallu, C., Perez, V., Seynave, I., Gasparotto, D., & Gégout, J.-C. (2014). Présentation du portail web SILVAE: Système d’informations localisée sur la végetation, les abres et leur environement. Revue Forestière Française, 1, 41.
Piedallu, C., Dallery, D., Bresson, C., Legay, M., Gégout, J.-C., et al. (2023). Spatial vulnerability assessment of silver fir and Norway spruce dieback driven by climate warming. Landscape Ecology, 38(2), 341–361. 10.1007/s10980-022-01570-1
Puhe, J. (2003). Growth and development of the root systern of Norway spruce (Picea abies) in forest stands-a review. Forest Ecoiogy and Management, 175, 253–273.
Rouse, W. R., & Wilson, R. G. (1969). Time and space variations in the radiant energy fluxes over sloping forested terrain and their influence on seasonal heat and water balances at a middle latitude site. Geografiska Annaler: Series a, Physical Geography, 51(3), 160–175.
Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., & Coumou, D. (2022). Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nature Communications, 13, 3851.
Saintonge, F.-X., Gillette, M., Blaser, S., Queloz, V., & Leroy, Q. (2022). Situation et gestion de la crise liée aux scolytes de l’Épicéa commun fin 2021 dans l’est de la France. Revue forestière française, 73(6), 619–641. 10.20870/revforfr.2021.7201 DOI: 10.20870/revforfr.2021.7201
Schulzweida, U., & Quast, R. (2015). Climate indices with CDO. Available at: https://earth.bsc.es/gitlab/ces/cdo/raw/b4f0edf2d5c87630ed4c5ddee5a4992e3e08b06a/doc/cdo_eca.pdf.
Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., & Bigler, C. (2013). Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. Forest Ecology and Management, 305, 273–281.
Theia. (2022). Theia French land data center. https://theia.cnes.fr.
Thonfeld, F., Gessner, U., Holzwarth, S., Kriese, J., Da Ponte, E., Huth, J., & Kuenzer, C. (2022). A first assessment of canopy cover loss in Germany’s forests after the 2018–2020 drought years. Remote Sensing, 14(3), 562.
Trubin, A., Mezei, P., Zabihi, K., Surovỳ, P., & Jakuš, R. (2022). Northernmost European spruce bark beetle Ips typographus outbreak: Modelling tree mortality using remote sensing and climate data. Forest Ecology and Management, 505, 119829.
Walthert, L., & Meier, E. S. (2017). Tree species distribution in temperate forests is more influenced by soil than by climate. Ecology and Evolution, 7(22), 9473–9484.
Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. Forest Ecology and Management, 202(1–3), 67–82.
Wermelinger, B., & Seifert, M. (1998). Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L) (Col., Scolytidae). Journal of Applied Entomology, 122(1–5), 185–191. 10.1111/j.1439-0418.1998.tb01482.x DOI: 10.1111/j.1439-0418.1998.tb01482.x
Zolubas, P., & Byers, J. A. (1995). Recapture of dispersing bark beetle Ips typographus L. (Col., Scolytidae) in pheromone-baited traps: Regression models. Journal of Applied Entomology, 119(1–5), 285–289.