Calvin, M., New sources for fuel and materials. Science 219 (1983), 24–26.
Ma, X., Tu, R., An, W., Xu, L., Luo, S., Wang, J., Tang, F., Experimental study of interlayer effect induced by building facade curtain wall on downward flame spread behavior of polyurethane. Appl. Therm. Eng., 167, 2020, 114694.
Chang, J.I., Lin, C.C., A study of storage tank accidents. J. Loss Prev. Process Ind. 19 (2006), 51–59.
He, H., Zhang, Q., Tu, R., Zhao, L., Liu, J., Zhang, Y., Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. J. Hazard. Mater. 320 (2016), 628–634.
Huang, X., Critical drip size and blue flame shedding of dripping ignition in fire. Sci. Rep., 8, 2018, 16528.
Sun, P., Lin, S., Huang, X., Ignition of thin fuel by thermoplastic drips: an experimental study for the dripping ignition theory. Fire Saf. J., 115, 2020, 103006.
Wang, X., Cheng, X., Li, L., Lo, S., Zhang, H., Effect of ignition condition on typical polymer's melt flow flammability. J. Hazard. Mater. 190 (2011), 766–771.
Sun, P., Lin, S., Huang, X., Ignition of thin fuel by thermoplastic drips: an experimental study for the dripping ignition theory. Fire Saf. J., 115, 2020, 103010.
Xie, Q., Tu, R., Wang, N., Ma, X., Jiang, X., Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics. J. Hazard. Mater. 267 (2014), 48–54.
Kim, Y., Hossain, A., Nakamura, Y., Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: prediction of drop time. Proc. Combust. Inst. 35 (2015), 2555–2562.
He, H., Zhang, Q., Tu, R., Zhao, L., Liu, J., Zhang, Y., Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. J. Hazard Mater. 320 (2016), 628–634.
Carosio, F., Di, A.P., Alongi, J., Fina, A., Saracco, G., Controlling the melt dripping of polyester fabrics by tuning the ionic strength of polyhedral oligomeric silsesquioxane and sodium montmorillonite coatings assembled through layer by layer. J. Colloid Interface Sci., 510, 2018, 142.
Wu, T., Yang, F., Tao, J., Zhao, H., Yu, C., Rao, W., Design of p-decorated poss towards flame-retardant, mechanically-strong, tough and transparent epoxy resins. J. Colloid Interface Sci. 640 (2023), 864–876.
Xiong, C., Liu, Y., Xu, C., Huang, X., Extinguishing the dripping flame by acoustic wave. Fire Saf. J., 120, 2021, 103109.
Xiong, C., Liu, Y., Fan, H., Huang, X., Nakamura, Y., Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source. Sci. Rep., 11, 2021, 14402.
Fan, X., Wang, C., Guo, F., Experimental study of flame expansion induced by water droplet impact on the burning cooking oil. Fuel, 270, 2020, 117497.
Xu, M., Zhang, J., Chen, R., Lu, S., Single droplet with or without additives impacting on high-temperature burning liquid pool. Int. J. Heat Mass Transf. 139 (2019), 77–86.
Dai, Q., Khonsari, M.M., Shen, C., Huang, W., Wang, X., Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient. Langmuir 32 (2016), 7485–7492.
Dai, Q., Chen, S., Huang, W., Wang, X., Hardt, S., On the thermocapillary migration between parallel plates. Int. J. Heat Mass Transf., 182, 2022, 121962.
Tran, T., Staat, H.J., Prosperetti, A., Sun, C., Lohse, D., Drop impact on superheated surfaces. Phys. Rev. Lett., 108, 2012, 36101.
Khavari, M., Tran, T., Time-dependent measurements of length and area of the contact line in contact-boiling regime. J. Fluid Mech., 926, 2021, R3.
Maxwell, J.C., The Scientific Papers of James Clerk Maxwell, vol. 2, 1890, Cambrige University Press.
Saxton, M.A., Whiteley, J.P., Vella, D., Oliver, J.M., On thin evaporating drops: when is the d2-law valid?. J. Fluid Mech. 792 (2016), 134–167.
Shaikh, J., Sharma, A., Bhardwaj, R., On sharp-interface level-set method for heat and/or mass transfer induced stefan problem. Int. J. Heat Mass Transf. 96 (2016), 458–473.
Haynes, W.M., Lide, D.R., Bruno, T.J., CRC Handbook of Chemistry and Physics. 97th ed., 2016, CRC Press, Boca Raton.
Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., Fundamentals of Heat and Mass Transfer. 7th ed., 2011, John Wiley and Sons.
Kulacki, F.A., Handbook of Thermal Science and Engineering. 1st ed., 2011, Springer.
Dai, Q., Huang, W., Wang, X., A surface texture design to obstruct the liquid migration induced by omnidirectional thermal gradients. Langmuir 31 (2015), 10154–10160.
Bourgks-Monnier, C., Shanahan, M.E.R., Influence of evaporation on contact angle. Langmuir 11 (1995), 2820–2829.
Moon, J.H., Cho, M., Lee, S.H., Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces. Int. J. Heat Mass Transf. 97 (2016), 308–317.
Li, J., Shan, L., Ma, B., Jiang, X., Solomon, A., Iyengar, M., Padilla, J., Agonafer, D., Investigation of the confinement effect on the evaporation behavior of a droplet pinned on a micropillar structure. J. Colloid Interface Sci. 555 (2019), 583–594.
Chen, K., Xu, R., Jiang, P., Evaporation enhancement of microscale droplet impact on micro/nanostructured surfaces. Langmuir 36 (2020), 12230–12236.
David, S., Sefiane, K., Tadrist, L., Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 298 (2007), 108–114.
Sobac, B., Brutin, D., Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E, 86, 2012, 21602.
Hsu, C., Su, T., Wu, C., Kuo, L., Chen, P., Influence of surface temperature and wettability on droplet evaporation. Appl. Phys. Lett., 106, 2015, 141602.