An innovative optimized protocol for high-quality genomic DNA extraction from recalcitrant Shea tree (Vitellaria paradoxa, C.F. Gaertn) plant and its suitability for downstream applications.
DNA purity; Downstream applications; Genomic DNA extraction protocol; Polymerase chain reaction; Sanger sequencing; DNA; Polysaccharides; Random Amplified Polymorphic DNA Technique; Trees; Genomics; Molecular Biology; Genetics; General Medicine
Abstract :
[en] [en] BACKGROUND: It is not always easy to find a universal protocol for the extraction of genomic DNA (gDNA) from plants. Extraction of gDNA from plants such as shea with a lot of polysaccharides in their leaves is done in two steps: a first step to remove the polysaccharides and a second step for the extraction of the gDNA. In this work, we designed a protocol for extracting high-quality gDNA from shea tree and demonstrate its suitability for downstream molecular applications.
METHODS: Fifty milligrams of leaf and root tissues were used to test the efficiency of our protocol. The quantity of gDNA was measured with the NanoDrop spectrometer and the quality was checked on agarose gel. Its suitability for use in downstream applications was tested with restriction enzymes, SSRs and RAPD polymerase chain reactions and Sanger sequencing.
RESULTS: The average yield of gDNA was 5.17; 3.96; 2.71 and 2.41 µg for dry leaves, dry roots, fresh leaves and fresh roots respectively per 100 mg of tissue. Variance analysis of the yield showed significant difference between all tissue types. Leaf gDNA quality was better compared to root gDNA at the absorbance ratio A260/280 and A260/230. The minimum amplifiable concentration of leaf gDNA was 1 pg/µl while root gDNA remained amplifiable at 10 pg/µl. Genomic DNA obtained was also suitable for sequencing.
CONCLUSION: This protocol provides an efficient, convenient and cost effective DNA extraction method suitable for use in various vitellaria paradoxa genomic studies.
Silué, Souleymane; Department of Biochemistry-Genetics, Faculty of Biological Sciences, Educational and Research Unit of Genetic, University of Peleforo Gon Coulibaly (UPGC), BP 1328, Korhogo, Côte d'Ivoire
Yao, Saraka Didier Martial; Department of Biochemistry-Genetics, Faculty of Biological Sciences, Educational and Research Unit of Genetic, University of Peleforo Gon Coulibaly (UPGC), BP 1328, Korhogo, Côte d'Ivoire
De Clerck, Caroline ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Shumbe, Léonard ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Diarrassouba, Nafan; Department of Biochemistry-Genetics, Faculty of Biological Sciences, Educational and Research Unit of Genetic, University of Peleforo Gon Coulibaly (UPGC), BP 1328, Korhogo, Côte d'Ivoire
Fofana, Inza Jésus; Department of Biochemistry-Genetics, Faculty of Biological Sciences, Educational and Research Unit of Genetic, University of Peleforo Gon Coulibaly (UPGC), BP 1328, Korhogo, Côte d'Ivoire
Alabi, Taofic ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Department of Biochemistry-Genetics, Faculty of Biological Sciences, Educational and Research Unit of Genetic, University of Peleforo Gon Coulibaly (UPGC), BP 1328, Korhogo, Côte d'Ivoire
An innovative optimized protocol for high-quality genomic DNA extraction from recalcitrant Shea tree (Vitellaria paradoxa, C.F. Gaertn) plant and its suitability for downstream applications.
Publication date :
22 January 2024
Journal title :
Molecular Biology Reports
ISSN :
0301-4851
eISSN :
1573-4978
Publisher :
Springer Science and Business Media B.V., Netherlands
We acknowledge the support of the plant Genetics laboratory at Gembloux Agro Bio-Tech and the Department of Biochemistry-Genetics, Educational and Research Unit of Genetics at the Péléforo Gon Coulibaly University in Korhogo, which made this study possible.
Glew D, Lovett PN (2014) Life cycle analysis of shea butter use in cosmetics: from parklands to product, low carbon opportunities. J Clean Prod 68:73–80 DOI: 10.1016/j.jclepro.2013.12.085
Naughton CC, Lovett PN, Mihelcic JR (2015) Land suitability modeling of shea (Vitellaria paradoxa) distribution across sub-Saharan Africa. Appl Geogr 58:217–227 DOI: 10.1016/j.apgeog.2015.02.007
Diarrassouba N, Nde Bup D, Kapseu C, Kouame C, Sangaré A (2009) Typology of shea trees (Vitellaria paradoxa C.F. Gaertn) using morphological traits in Côte d’Ivoire. Geneconserve 8(33):752–780
Bup DN, Mohagir AM, Kapseu C, Mouloungui Z (2014) Production zones and systems, markets, benefits and constraints of shea (Vitellaria paradoxa Gaertn) butter processing. OCL 21(2):D206 DOI: 10.1051/ocl/2013045
Abdul-Hammed M, Jaji AO, Adegboyega SA (2020) Comparative studies of thermophysical and physicochemical properties of shea butter prepared from cold press and solvent extraction methods. J King Saud Univ - Sci 32(4):2343–2348 DOI: 10.1016/j.jksus.2020.03.012
IUCN (1998) IUCN Red List of Threatened Species: Vitellaria paradoxa. IUCN Red List Threat Species [Internet]. [cité 27 sept 2023]; Disponible sur: https://www.iucnredlist.org/en
Diarrassouba N, Yao S.D.M., Traoré B. (2017) Identification participative et caractérisation des arbres élites de karité dans la zone de production en Côte d’Ivoire. p. 15
Abbasi Kejani A, Hosseini Tafreshi SA, Khayyam Nekouei SM, Mofid MR (2010) Efficient isolation of high quality nucleic acids from different tissues of Taxus baccata L. Mol Biol Rep 37(2):797–800 DOI: 10.1007/s11033-009-9607-2
Nagori R, Sharma P, Habibi N, Purohit SD (2014) An efficient genomic DNA extraction protocol for molecular analysis in annona reticulata. Natl Acad Sci Lett 37(2):137–140 DOI: 10.1007/s40009-013-0213-4
Aboul-Maaty NAF, Oraby HAS (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Natl Res Cent 43(1):25 DOI: 10.1186/s42269-019-0066-1
Rezadoost MH, Kordrostami M, Kumleh HH (2016) An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3 Biotech 6(1):61 DOI: 10.1007/s13205-016-0375-0
Ahmadi E, Kowsari M, Azadfar D, Salehi JG (2018) Rapid and economical protocols for genomic and metagenomic DNA extraction from oak (Quercus brantii Lindl.). Ann For Sci 75(2):43 DOI: 10.1007/s13595-018-0705-y
Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J et al (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101(4):669–676 DOI: 10.1007/s001220051529
Varma A, Padh H, Shrivastava N (2007) Plant genomic DNA isolation: an art or a science. Biotechnol J 2(3):386–392 DOI: 10.1002/biot.200600195
Allal F, Vaillant A, Sanou H, Kelly B, Bouvet JM (2008) Isolation and characterization of new microsatellite markers in shea tree (Vitellaria paradoxa C. F. Gaertn). Mol Ecol Resour 8(4):822–824 DOI: 10.1111/j.1755-0998.2007.02079.x
Allal F, Sanou H, Millet L, Vaillant A, Camus-Kulandaivelu L, Logossa ZA et al (2011) Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107(2):174–186 DOI: 10.1038/hdy.2011.5
Kelly AB, Hardy O, Bouvet JM (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13(5):1231–1240 DOI: 10.1111/j.1365-294X.2004.02144.x
Bouvet JM, Fontaine C, Sanou H, Cardi C (2004) An analysis of the pattern of genetic variation in Vitellaria paradoxa using RAPD markers. Agrofor Syst 60(1):61–69 DOI: 10.1023/B:AGFO.0000009405.74331.74
Cardi C, Vaillant A, Sanou H, Kelly BA, Bouvet JM (2005) Characterization of microsatellite markers in the shea tree (Vitellaria paradoxa C.F. Gaertn) in Mali. Mol Ecol Notes 5(3):524–526 DOI: 10.1111/j.1471-8286.2005.00980.x
Fontaine C, Lovett PN, Sanou H, Maley J, Bouvet JM (2004) Genetic diversity of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93(6):639–648 DOI: 10.1038/sj.hdy.6800591
Gwali S, Vaillant A, Nakabonge G, Okullo JBL, Eilu G, Muchugi A et al (2015) Genetic diversity in shea tree (Vitellaria paradoxa subspecies nilotica) ethno-varieties in Uganda assessed with microsatellite markers. For Trees Livelihoods 24(3):163–175 DOI: 10.1080/14728028.2014.956808
Hale I, Ma X, Melo ATO, Padi FK, Hendre PS, Kingan SB et al (2021) Genomic resources to guide improvement of the shea tree. Front Plant Sci. 10.3389/fpls.2021.720670 DOI: 10.3389/fpls.2021.720670
Logossa ZA, Camus-Kulandaivelu L, Allal F, Vaillant A, Sanou H, Kokou K et al (2011) Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol Ecol 20(19):4009–4027 DOI: 10.1111/j.1365-294X.2011.05249.x
Mohammed HI, Mohammed Z, Warra A, Abdulrahman Y, Sabo I, Ibrahim G et al (2022) Physicochemical and Genetic diversity studies of vitellaria paradoxa in Northern Nigeria. J Curr Biomed Res 2(1):19–37 DOI: 10.54117/jcbr.v2i1.4
Sanou H, Lovett PN, Bouvet JM (2005) Comparison of quantitative and molecular variation in agroforestry populations of the shea tree (Vitellaria paradoxa C.F. Gaertn) in Mali. Mol Ecol 14(8):2601–2610 DOI: 10.1111/j.1365-294X.2005.02601.x
Doyle, J.J. and Doyle, J.L., (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull
Youssef M, Valdez-Ojeda R, Ku-Cauich J, EscobedoGraciaMedrano R (2015) Enhanced protocol for isolation of plant genomic DNA. J Agric Environ Sci 4:172–180
Stulnig TM, Amberger A (1994) Exposing contaminating phenol in nucleic acid preparations. BioTechniques mars 16(3):402–404
Scobeyeva VA, Omelchenko DO, Dyakov LM, Konovalov AS, Speranskaya AS, Krinitsina AA (2018) Comparison of Some Plant DNA Extraction Methods. Russ J Genet 54(5):576–586 DOI: 10.1134/S1022795418050095
Schmiderer C, Lukas B, Novak J (2013) Effect of different DNA extraction methods and DNA dilutions on the amplification success in the PCR of different medicinal and aromatic plants. Z Für Arznei- Amp Gewürzpflanzen 18(2):65–72
Henry RJ (2001) Plant DNA extraction. In: Henry RJ (ed) Plant Genotyping DNA Fingerprinting Plants. CABI Publishing, Wallingford, pp 239–249 DOI: 10.1079/9780851995151.0239
Kang TJ, Yang MS (2004) Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants. BMC Biotechnol 4(1):20 DOI: 10.1186/1472-6750-4-20
de Souza DC, Teixeira TA (2019) A simple and effective method to obtain high DNA quality and quantity from Cerrado plant species. Mol Biol Rep 46(4):4611–4615 DOI: 10.1007/s11033-019-04845-0
Pandey S, Alam A, Chakraborty D, Sharma V (2019) An Improved Protocol for Genomic DNA Isolation from Bryophyte Species. Proc Natl Acad Sci India Sect B Biol Sci 89(3):823–831 DOI: 10.1007/s40011-018-0995-8
Li H, Li J, Cong XH, Duan YB, Li L, Wei PC et al (2013) A high-throughput, high-quality plant genomic DNA extraction protocol. Genet Mol Res 12(4):4526–4539 DOI: 10.4238/2013.October.15.1
Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor. Cold Spring Harbor Laboratory Press, New York
Lade BD, Patil AS, Paikrao HM (2014) Efficient genomic DNA extraction protocol from medicinal rich Passiflora foetida containing high level of polysaccharide and polyphenol. Springerplus 3(1):457 DOI: 10.1186/2193-1801-3-457