[en] [en] STUDY OBJECTIVES: Daytime napping is frequently reported among the older population and has attracted increasing attention due to its association with multiple health conditions. Here, we tested whether napping in the aged is associated with altered circadian regulation of sleep, sleepiness and vigilance performance.
METHODS: Sixty healthy older individuals (mean age: 69y., 39 women) were recruited with respect to their napping habits (30 nappers, 30 non-nappers). All participants underwent an in-lab 40-h multiple nap protocol (10 cycles of 80 mins of sleep opportunity alternating with 160 mins of wakefulness), preceded and followed by a baseline and recovery sleep period. Saliva samples for melatonin assessment, sleepiness and vigilance performance were collected during wakefulness and electrophysiological data were recorded to derive sleep parameters during scheduled sleep opportunities.
RESULTS: The circadian amplitude of melatonin secretion was reduced in nappers, compared to non-nappers. Furthermore, nappers were characterized by higher sleep efficiencies and REM sleep proportion during day- compared to night-time naps. The nap group also presented altered modulation in sleepiness and vigilance performance at specific circadian phases.
DISCUSSION: Our data indicate that napping is associated with an altered circadian sleep-wake propensity rhythm and thereby contribute to the understanding of the biological correlates underlying napping and/or sleep-wake cycle fragmentation during healthy aging. Altered circadian sleep-wake promotion can lead to a less distinct allocation of sleep into night-time and/or a reduced wakefulness drive during the day, thereby potentially triggering the need to sleep at adverse circadian phase.
Disciplines :
Neurology
Author, co-author :
Deantoni, Michele ✱; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
Reyt, Mathilde ✱; Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium ; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
Baillet, Marion; Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
Dourte, Marine ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
de Haan, Stella ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
Lesoinne, Alexia ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
Vandewalle, Gilles ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Maquet, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > > Service de neurologie
Berthomier, Christian ; Physip, Paris, France
Muto, Vincenzo ; Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
Hammad, Grégory ✱; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte
Schmidt, Christina ✱; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte
✱ These authors have contributed equally to this work.
Language :
English
Title :
Napping and circadian sleep-wake regulation during healthy aging.
Dijk DJ, von Schantz M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms. 2005;20(4):279–290. doi: 10.1177/0748730405278292
Weissbluth M. Naps in children: 6 months-7 years. Sleep. 1995;18(2):82–87. doi: 10.1093/sleep/18.2.82
Schmidt C, Collette F, Cajochen C, Peigneux P. A time to think: Circadian rhythms in human cognition. Cogn Neuropsychol. 2007;24(7):755–789. doi: 10.1080/02643290701754158
Cajochen C, Münch M, Knoblauch V, Blatter K, Wirz-Justice A. Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol Int. 2006;23(1-2):461–474. doi: 10.1080/07420520500545813
Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol. 1999;516(Pt 2):611–627. doi: 10.1111/j.1469-7793.1999.0611v.x
Schmidt C, Peigneux P, Cajochen C. Age-related changes in sleep and circadian rhythms: impact on cognitive performance and underlying neuroanatomical networks. Front Neurol. 2012;3:118. doi: 10.3389/fneur.2012.00118
Duffy JF, Zitting KM, Chinoy ED. Aging and circadian rhythms. Sleep Med Clin. 2015;10(4):423–434. doi: 10.1016/j. jsmc.2015.08.002
Dijk DJ, Duffy JF. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics. Ann Med. 1999;31(2):130–140. doi: 10.3109/07853899908998789
Munch M, Knoblauch V, Blatter K, et al. Age-related attenuation of the evening circadian arousal signal in humans. Neurobiol Aging. 2005;26(9):1307–1319. doi: 10.1016/j. neurobiolaging.2005.03.004
Skeldon AC, Derks G, Dijk DJ. Modelling changes in sleep timing and duration across the lifespan: Changes in circadian rhythmicity or sleep homeostasis? Sleep Med Rev. 2016;28:96–107. doi: 10.1016/j.smrv.2015.05.011
Milner CE, Cote KA. Benefits of napping in healthy adults: Impact of nap length, time of day, age, and experience with napping. JSleep Res. 2009;18(2):272–281. doi: 10.1111/j.1365-2869.2008.00718.x
Ohayon MM, Zulley J, Guilleminault C, Smirne S, Priest RG. How age and daytime activities are related to insomnia in the general population: Consequences for older people. J Am Geriatr Soc. 2001;49(4):360–366. doi: 10.1046/j.1532-5415.2001.49077.x
McDevitt EA, Sattari N, Duggan KA, et al. The impact of frequent napping and nap practice on sleep-dependent memory in humans. Sci REPoRTS. 2018;8:15053. doi: 10.1038/ s41598-018-33209-0
Lo JC, Ong JL, Leong RLF, Gooley JJ, Chee MWL. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep. 2016;39(3):687–698. doi: 10.5665/sleep.5552
LoJC,LeeSM,TeoLM,LimJ,GooleyJJ,CheeMWL.Neurobehavioral impact of successive cycles of sleep restriction with and without naps in adolescents. Sleep. 2017;40(2). doi: 10.1093/sleep/ zsw042
Lo JC, Leong RLF, Ng ASC, et al. Cognitive effects of split and continuous sleep schedules in adolescents differ according to total sleep opportunity. Sleep. 2020;43(12). doi: 10.1093/sleep/ zsaa129
Lo JC-Y, Koa TB, Ong JL, Gooley JJ, Chee MWL. Staying vigilant during recurrent sleep restriction: Dose-response effects of time-in-bed and benefits of daytime napping. Sleep. 2022;45(4). doi: 10.1093/sleep/zsac023
Bursztyn M, Stessman J. The siesta and mortality: Twelve years of prospective observations in 70-year-olds. Sleep. 2005;28(3):345–347.
Sun J, Ma C, Zhao M, Magnussen CG, Xi B. Daytime napping and cardiovascular risk factors, cardiovascular disease, and mortality: A systematic review. Sleep Med Rev. 2022;65:101682. doi: 10.1016/j.smrv.2022.101682
Leng Y, Wainwright NWJ, Cappuccio FP, et al. Daytime napping and the risk of all-cause and cause-specific mortality: A 13-year follow-up of a British population. Am J Epidemiol. 2014;179(9):1115–1124. doi: 10.1093/aje/kwu036
Sprecher KE, Bendlin BB, Racine AM, et al. Amyloid burden is associated with self-reported sleep in nondemented late middle-aged adults. Neurobiol Aging. 2015;36(9):2568–2576. doi: 10.1016/j.neurobiolaging.2015.05.004
Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology-a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115–119. doi: 10.1038/nrneurol.2013.269
Leng Y, Redline S, Stone KL, Ancoli-Israel S, Yaffe K. Objective napping, cognitive decline, and risk of cognitive impairment in older men. Alzheimers Dement. 2019;15(8):1039–1047. doi: 10.1016/j.jalz.2019.04.009
Owusu JT, Wennberg AMV, Holingue CB, Tzuang M, Abeson KD, Spira AP. Napping characteristics and cognitive performance in older adults. Int J Geriatr Psychiatry. 2019;34(1):87–96. doi: 10.1002/gps.4991
Blackwell T, Yaffe K, Ancoli-Israel S, et al.; Study of Osteoporotic Fractures Group. Poor sleep is associated with impaired cognitive function in older women: The study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci. 2006;61(4):405–410. doi: 10.1093/gerona/61.4.405
Li P, Gao L, Yu L, et al. Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimers Dement. 2022;19:158–168. doi:10.1002/alz.12636
Ficca G, Axelsson J, Mollicone DJ, Muto V, Vitiello MV. Naps, cognition and performance. Sleep Med Rev. 2010;14(4):249–258. doi: 10.1016/j.smrv.2009.09.005
Carskadon MA, Brown ED, Dement WC. Sleep fragmentation in the elderly: Relationship to daytime sleep tendency. Neurobiol Aging. 1982;3(4):321–327. doi: 10.1016/0197-4580(82)90020-3
Reyt M, Deantoni M, Baillet M, et al. Daytime rest: Association with 24-h rest-activity cycles, circadian timing and cognition in older adults. J Pineal Res. 2022;73(3):e12820. doi: 10.1111/ jpi.12820
Beck AT, Steer RA. Internal consistencies of the original and revised Beck Depression Inventory. J Clin Psychol. 1984;40(6):1365–1367. doi: 10.1002/1097-4679(198411)40:6<1365::aidjclp2270400615>3.0.co;2-d
Beck AT, Brown G, Epstein N, Steer RA. An inventory for measuring clinical anxiety: Psychometric properties. J Consult Clin Psychol. 1988;56(6):893–897. doi: 10.1037/0022-006X.56.6.893
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6
Mattis S. Mental status examination of organic mental syndrome in the elderly patient. In: Bellack L, Karusu TB, eds. Geriatric Psychiaty. New York: Grune and Stratton; 1976:77–121.
Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4
Johns MW. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep. 1991;14(6):540–545. doi: 10.1093/sleep/14.6.540
Horne JA, Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4:97–110.
Rosenthal NE, Sack DA, Gillin JC, et al. Seasonal affective disorder A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry. 1984;41(1):72–80. doi: 10.1001/archpsyc.1984.01790120076010
Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: The PACC5. Alzheimer’s Dement (New York, N Y). Alzheimer's Dementia (N Y). 2017;3(4):668–677. doi: 10.1016/j.trci.2017.10.004
Elwood RW. The wechsler memory scale-revised: Psychometric characteristics and clinical application. Neuropsychol Rev. 1991;2(2):179–201. doi: 10.1007/BF01109053
Kaufman AS. Test Review: Wechsler, D. Manual for the Wechsler Adult Intelligence Scale, Revised New York: Psychological Corporation, 1981. J Psychoeduc Assess. 1983;1(3):309–313. doi: 10.1177/073428298300100310
Grober E, Ocepek-Welikson K, Teresi JA. The free and cued selective reminding test: Evidence of psychometric adequacy. Psychol Sci. 2009;51:266.
Hammad G, Reyt M, Beliy N, et al. pyActigraphy: Open-source python package for actigraphy data visualization and analysis. PLoS Comput Biol. 2021;17(10):e1009514. doi: 10.1371/journal. pcbi.1009514
Roenneberg T, Keller LK, Fischer D, Matera JL, Vetter C, Winnebeck EC. Human activity and rest in situ. Methods Enzymol. 2015;552:257–283. doi: 10.1016/bs.mie.2014.11.028
Loock A-S, Khan Sullivan A, Reis C, et al. Validation of the munich actimetry sleep detection algorithm for estimating sleep-wake patterns from activity recordings. J Sleep Res. 2021;30(6):e13371. doi: 10.1111/jsr.13371
Demeuse JJ, Calaprice C, Huyghebaert LC, et al. Development and validation of an Ultrasensitive LC-MS/MS method for the quantification of melatonin in human saliva. J Am Soc Mass Spectrom. 2023;34(6):1056–1064. doi: 10.1021/jasms.3c00021
Van Someren EJW, Nagtegaal E. Improving melatonin circadian phase estimates. Sleep Med. 2007;8(6):590–601. doi: 10.1016/j. sleep.2007.03.012
Iber C, of Sleep Medicine AA. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester: American Academy of Sleep Medicine; 2007.
Berthomier C, Muto V, Schmidt C, et al. Exploring scoring methods for research studies: Accuracy and variability of visual and automated sleep scoring. J Sleep Res. 2020;29(5):e12994. doi: 10.1111/jsr.12994
Chylinski D, Berthomier C, Lambot E, et al. Variability of sleep stage scoring in late midlife and early old age. J Sleep Res. 2022;31(1):e13424. doi: 10.1111/jsr.13424
Peter-Derex L, Berthomier C, Taillard J, et al. Automatic analysis of single-channel sleep EEG in a large spectrum of sleep disorders. J Clin Sleep Med. 2021;17(3):393–402. doi: 10.5664/ jcsm.8864
Deantoni M, Reyt M, Berthomier C, et al. Association between circadian sleep regulation and cortical gyrification in young and older adults. Sleep. 2023;46(9). doi: 10.1093/sleep/zsad094
Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990;52(1–2):29–37. doi: 10.3109/00207459008994241
Dinges, Powell JW, DF Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods, Instruments, Comp A J Psychon Soc. 1985;17:625–655.
Jewett ME, Wyatt JK, Ritz-De Cecco A, Khalsa SB, Dijk DJ, Czeisler CA. Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res. 1999;8(1):1–8. doi: 10.1111/j.1365-2869.1999.00128.x
Basner M, Mollicone D, Dinges DF. Validity and sensitivity of a brief Psychomotor Vigilance Test (PVT-B) to total and partial sleep deprivation. Acta Astronaut. 2011;69(11-12):949–959. doi: 10.1016/j.actaastro.2011.07.015
Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–322. doi: 10.1196/annals.1417.002
Bursztyn M, Ginsberg G, Stessman J. The siesta and mortality in the elderly: Effect of rest without sleep and daytime sleep duration. Sleep. 2002;25(2):187–191. doi: 10.1093/sleep/25.2.187
Wang JL, Lim AS, Chiang WY, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol. 2015;78(2):317–322. doi: 10.1002/ana.24432
Duffy JF, Dijk DJ, Hall EF, Czeisler CA. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Investig Med. 1999;47(3):141–150.
Dijk DJ, Duffy JF, Czeisler CA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int. 2000;17(3):285–311. doi: 10.1081/ cbi-100101049
Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol. 1999;516(Pt 2):611–627. doi: 10.1111/j.1469-7793.1999.0611v.x
Czeisler CA, Dumont M, Duffy JF, et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet. 1992;340(8825):933–936. doi: 10.1016/0140-6736(92)92817-y
Magri F, Sarra S, Cinchetti W, et al. Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res. 2004;36(4):256–261. doi: 10.1111/j.1600-079X.2004.00125.x
Zeitzer JM, Daniels JE, Duffy JF, et al. Do plasma melatonin concentrations decline with age? Am J Med. 1999;107(5):432–436. doi: 10.1016/s0002-9343(99)00266-1
Zeitzer JM, Duffy JF, Lockley SW, Dijk DJ, Czeisler CA. Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake. Sleep. 2007;30(11):1437–1443. doi: 10.1093/sleep/30.11.1437
Kalsbeek A, Garidou ML, Palm IF, et al. Melatonin sees the light: Blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci. 2000;12(9):3146–3154. doi: 10.1046/j.1460-9568.2000.00202.x
Duffy JF, Dijk DJ, Klerman EB, Czeisler CA. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am J Physiol. 1998;275(5 Pt 2):R1478–87.
Dijk DJ, Groeger JA, Stanley N, Deacon S. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep. 2010;33(2):211–223. doi: 10.1093/sleep/33.2.211
Strogatz SH, Kronauer RE, Czeisler CA. Circadian pacemaker interferes with sleep onset at specific times each day: Role in insomnia. Am J Physiol. 1987;253(1 Pt 2):R172–R178. doi: 10.1152/ ajpregu.1987.253.1.R172
Haimov I, Lavie P. Circadian characteristics of sleep propensity function in healthy elderly: A comparison with young adults. Sleep. 1997;20(4):294–300. doi: 10.1093/sleep/20.4.294
Saper CB, Chou TC, Scammell TE. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24(12):726–731. doi: 10.1016/s0166-2236(00)02002-6
Schoch SF, Werth E, Poryazova R, Scammell TE, Baumann CR, Imbach LL. Dysregulation of sleep behavioral states in narcolepsy. Sleep. 2017;40(12). doi: 10.1093/sleep/zsx170
Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep. 1980;2(3):329–346.
Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves and sleep spindle activity in humans. J Neurosci. 1995;15:3526–3538. doi: 10.1523/ JNEUROSCI.15-05-03526.1995
Wurts SW, Edgar DM. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci. 2000;20(11):4300–4310. doi: 10.1523/JNEUROSCI.20-11-04300.2000