Keywords :
Chromatin; Diethylnitrosamine; 6-ethylguanine; Guanine; Ethylnitrosourea; Animals; Cell Nucleus/metabolism; Chemical Phenomena; Chemistry; Chromatin/metabolism; Chromatography, Paper; Diethylnitrosamine/pharmacology; Ethylnitrosourea/pharmacology; Guanine/analogs & derivatives; Guanine/metabolism; Liver/metabolism; Male; Rats; Rats, Inbred Strains; DNA Repair/drug effects; Biochemistry
Abstract :
[en] Cell nuclei prepared from rat liver were alkylated in vitro with ethylnitrosourea; the nuclear DNA was found to lose O6-ethylguanine and 7-ethylguanine during a subsequent incubation at 37 degrees C. The rate of O6-ethylguanine loss is comparable to that observed in vivo, indicating that no cytoplasmic component is needed for the repair; no free O6-ethylguanine was found in the incubation medium of the ethylated nuclei. The rate of 7-ethylguanine loss is higher than the spontaneous depurination in vitro and an amount of free 7-ethylguanine equivalent to that lost by the nuclear DNA was found in the incubation medium; these results suggest that this DNA lesion is excised by a DNA glycosylase. The proteins of the chromatin prepared from the isolated nuclei induced the disappearance of O6-ethylguanine from an added ethylated DNA. No free O6-ethylguanine was released indicating that the repair is not catalyzed by a DNA glycosylase; no oligonucleotides enriched in O6-ethylguanine were released either, indicating that the disappearance of O6-ethylguanine from DNA is not the result of the cooperative action of a specific endonuclease and an exonuclease. Activities capable of removing O6-ethylguanine from DNA were found in other cell compartments; most of it, however, is in the nucleus where the main location is chromatin. A pretreatment of the rats with daily low doses of diethylnitrosamine during 3 or 4 weeks increased 2-3-times the repair activity of the chromatin proteins.
Scopus citations®
without self-citations
7