[en] Leads play an important role in the exchange of heat, gases, vapour, and particles between seawater and the atmosphere in ice-covered polar oceans. In summer, these processes can be modified significantly by the formation of a meltwater layer at the surface, yet we know little about the dynamics of meltwater layer formation and persistence. During the drift campaign of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), we examined how variation in lead width, re-freezing, and mixing events affected the vertical structure of lead waters during late summer in the central Arctic. At the beginning of the 4-week survey period, a meltwater layer occupied the surface 0.8 m of the lead, and temperature and salinity showed strong vertical gradients. Stable oxygen isotopes indicate that the meltwater consisted mainly of sea ice meltwater rather than snow meltwater. During the first half of the survey period (before freezing), the meltwater layer thickness decreased rapidly as lead width increased and stretched the layer horizontally. During the latter half of the survey period (after freezing of the lead surface), stratification weakened and the meltwater layer became thinner before disappearing completely due to surface ice formation and mixing processes. Removal of meltwater during surface ice formation explained about 43% of the reduction in thickness of the meltwater layer. The remaining approximate 57% could be explained by mixing within the water column initiated by disturbance of the lower boundary of the meltwater layer through wind-induced ice floe drift. These results indicate that rapid, dynamic changes to lead water structure can have potentially significant effects on the exchange of physical and biogeochemical components throughout the atmosphere-lead-underlying seawater system.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Nomura, Daiki; Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan ; Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan ; Arctic Research Center, Hokkaido University, Sapporo, Japan
Kawaguchi, Yusuke; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
Webb, Alison L.; School of Life Sciences, University of Warwick, Coventry, United Kingdom ; Department of Chemistry, University of York, York, United Kingdom
Li, Yuhong; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
Dall'osto, Manuel; Institute of Marine Sciences, CSIC, Barcelona, Spain
Schmidt, Katrin; School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, United Kingdom
Droste, Elise S.; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom ; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Chamberlain, Emelia J.; Scripps Institution of Oceanography, University of California, San Diego, United States
Kolabutin, Nikolai; Arctic and Antarctic Research Institute, Saint Petersburg, Russian Federation
Shimanchuk, Egor; Arctic and Antarctic Research Institute, Saint Petersburg, Russian Federation
Hoppmann, Mario; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Gallagher, Michael R.; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, United States ; National Oceanic and Atmospheric Administration, Physical Sciences Laboratory, Boulder, United States
Meyer, Hanno; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Mellat, Moein; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Bauch, Dorothea; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany ; Leibniz Laboratory, University of Kiel (CAU), Kiel, Germany
Gabarró, Carolina; Barcelona Expert Center (BEC), Institute of Marine Science (ICM-CSIC), Barcelona, Spain
Smith, Madison M.; Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, United States ; Woods Hole Oceanographic Institution, Woods Hole, United States
Inoue, Jun; National Institute of Polar Research, Tachikawa, Japan
Damm, Ellen; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
This study was supported by the Japan Society for the Promotion of Science (grant numbers: JP18H03745; JP18KK0292; JP17KK0083; JP17H04715; JP20H04345) and by a grant from the Joint Research Program of the Japan Arctic Research NetworkCenter. MM and HM are supported through the German Federal Ministry of Education and Research (grant number 03FO869A). ALW and KS were funded through the UK Natural Environment Research Council (NERC) (Grants No NE/S002596/1 and NE/S002502/1, respectively). ESD was supported by NERC through the EnvEast Doctoral Training Partnership (NE/L002582/1), as well as NERC and the Department for Business, Energy & Industrial Strategy (BEIS) through the UK Arctic Office. EJC was supported by the National Science Foundation (USA) NSF OPP 1821911 and NSF Graduate Research Fellowship. CG was funded through the Spanish funding Agency (AEI) though the grant PCI 2019-111844-2. MMS was funded through NSF OPP-1724467, OPP-1724748, and OPP-2138787. DB was funded through the German funding Agency (DFG) through grant BA1689/4-1.
Assmy, P, Fernandez-Mendez, M, Duarte, P, Meyer, A, Randelhoff, A, Mundy, CJ, Olsen, LM, Kauko, HM, Bailey, A, Chierici, M, Cohen, L, Doulgeris, AP, Ehn, JK, Fransson, A, Gerland, S, Hop, H, Hudson, SR, Hughes, N, Itkin, P, Johnsen, G, King, JA, Koch, BP, Koenig, Z, Kwasniewski, S, Laney, SR, Nicolaus, M, Pavlov, AK, Polashenski, CM, Provost, C, Rosel, A, Sandbu, M, Spreen, G, Smedsrud, LH, Sundfjord, A, Taskjelle, T, Tatarek, A, Wiktor, J, Wagner, PM, Wold, A, Steen, H, Granskog, MA. 2017. Leads in Arctic pack ice enable early phytoplankton blooms below snow covered sea ice. Scientific Reports 7. DOI: http://doi.org/10. 1038/srep40850.
Baccarini, A, Karlsson, L, Dommen, J, Duplessis, P, Vüllers, J, Brooks, IM, Saiz-Lopez, A, Salter, M, Tjernström, M, Baltensperger, U, Zieger, P, Schmale, J. 2020. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications 11: 4924. DOI: https://doi.org/10.1038/s41467-020-18551-0.
Bauch, D, Schlosser, P, Fairbanks, RF. 1995. Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O. Progress in Oceanography 35: 53-80. DOI: http://doi.org/10.1016/0079-6611(95)00005-2.
Beck, L, Sarnela, N, Junninen, H, Hoppe, CJM, Gar-mash, O, Bianchi, F, Riva, M, Rose, C, Peräkylä, O, Wimmer, D, Kausiala, O, Jokinen, T, Ahonen, L, Mikkilä, J, Hakala, L, He, HU, Kontkanen, J, Wolf, KKE, Cappelletti, D, Sipilä, M. 2021. Differing mechanisms of new particle formation at two Arctic sites. Geophysical Research Letters 48(4): e2020GL091334. DOI: https://doi.org/10.1029/2020GL091334.
Carmack, EC, Yamamoto-Kawai, M, Haine, TWN, Bacon, S, Bluhm, BA, Lique, C, Melling, H, Polyakov, IV, Straneo, F, Timmermans, M-L, Williams, WJ. 2016. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences 121: 675-717. DOI: https://doi.org/10.1002/2015JG003140.
Eicken, H. 1994. Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover. Limnology and Oceanography 39: 682-694. DOI: https://doi.org/10.4319/lo.1994.39.3.0682.
Eicken, H, Krouse, HR, Kadko, D, Perovich, DK. 2002. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. Journal of Geophysical Research: Oceans 107(C10): SHE-22. DOI: http://doi.org/10.1029/2000JC000583.
Fransson, A, Chierici, M, Skjelvan, I, Olsen, A, Assmy, P, Peterson, AK, Ward, B. 2017. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes. Journal of Geophysical Research: Oceans 122: 5566-5587. DOI: https://doi.org/10.1002/2016JC012478.
Golovin, PN, Ivanov, VV. 2015. Density stratification effects on the ice lead heat balance and perennial ice melting in the Central Arctic. Russian Meteorology and Hydrology 40(1): 46-59. DOI: http://doi.org/10.3103/S1068373915010070.
Inoue, J, Kikuchi T. 2006. Effect of summertime wind conditions on lateral and bottom melting in the central Arctic. Annals of Glaciology 44: 37-41. DOI: http://doi.org/10.3189/172756406781811231.
Itkin, P, Spreen, G, Cheng, B, Doble, M, Girard-Ardhuin, F, Haapala, J, Hughes, N, Kaleschke, L, Nicolaus, M, Wilkinson, J. 2017. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. Journal of Geophysical Research: Oceans 122: 4661-4674. DOI: http://doi.org/10.1002/2016JC012403.
Kauko, HM, Taskjelle, T, Assmy, P, Pavlov, AK, Mundy, CJ, Duarte, P, Fernández-Méndez, M, Olsen, LM, Hudson, SR, Johnsen, G, Elliott, A, Wang Granskog, MA. 2017. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead. Journal of Geophysical Research: Biogeosciences 122(6): 1486-1505. DOI: http://doi.org/10.1002/2016JG003626.
Kawaguchi, Y, Koenig, Z, Nomura, D, Hoppman, M, Inoue, J, Fang, Y-C, Schulz, K, Katlein, C, Nicolaus, M, Rabe, B. 2022. Turbulent mixing during late summer in the ice-ocean boundary layer in the central Arctic Ocean: Results from the MOSAiC expedition. Journal of Geophysical Research: Oceans 127(8): e2021JC017975. DOI: https://doi.org/10.1029/2021JC017975.
Kwok, R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958-2018). Environmental Research Letters 13: 105005. DOI: http://doi.org/10.1088/1748-9326/aae3ec.
Lange, BA, Salganik, E, Macfarlane, A, Schneebeli, M, Høyland, K, Gardner, J, Müller, O, Divine, DV, Kohlbach, D, Katlein, C, Granskog, M. n.d. Snow-melt contributes to first-year ice ridge consolidation during summer melt. Elementa: Science of the Anthropocene, submitted, under review.
Lindsay, R, Schweiger, A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere 9(1): 269-283. DOI: http://doi.org/10.5194/tc-9-269-2015.
Loose, B, McGillis, WR, Perovich, D, Zappa, CZ, Schlosser, P. 2014. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Science 10(1): 17-28. DOI: https://doi.org/10.5194/os-10-17-2014.
Maykut, GA. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research 83(C7): 3646-3658. DOI: https://doi.org/10.1029/JC083iC07p03646.
McPhee, MG, Proshutinsky, A, Morison, JH, Steele, M, Alkire, MB. 2009. Rapid change in freshwater content of the Arctic Ocean. Geophysical Research Letters 36: L10602. DOI: https://doi.org/10.1029/2009GL037525.
Meier, WN, Hovelsrud, GK, van Oort, BEH, Key, JR, Kovacs, KM, Michel, C, Haas, C, Granskog, MA, Gerland, S, Perovich, DK, Makshtas, A, Reist, JD. 2014. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Review of Geophysics 52: 185-217. DOI: http://doi.org/10.1002/2013RG000431.
Meyer, H, Mellat, M, Nomura, D, Damm, E, Bauch, D, Weiner, M, Marent, A. 2022. Stable water isotopes and conductivities of a lead case study during Leg 5 of the MOSAiC expedition. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.945285.
Meyer, H, Schönicke, L, Wand, U, Hubberten, H-W, Friedrichsen, H. 2000. Isotope studies of hydrogen and oxygen in ground ice-Experiences with the equilibration technique. Isotopes in Environmental and Health Studies 36(2): 133-149. DOI: https://doi.org/10.1080/10256010008032939.
Morison, JH, McPhee, MG. 1998. Lead convection measured with an autonomous underwater vehicle. Journal Geophysical Research: Oceans 103: 3257-3281. DOI: https://doi.org/10.1029/97JC02264.
Morison, JH, McPhee, MG, Curtin, TB, Paulson, CA. 1992. The oceanography of winter leads. Journal Geophysical Research: Oceans 97: 11199-11218. DOI: https://doi.org/10.1029/92JC00684.
Nansen, F. 1902. The oceanography of the North Polar Basin, The Norwegian North Polar Expedition 1893-1896. Scientific Results 3: 1-427.
Nicolaus, M, Arndt, S, Birnbaum, G, Katlein, C. 2021. Visual panoramic photographs of the surface conditions during the MOSAiC campaign 2019/20. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA. 938534.
Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, von Albedyll, L, Anhaus, P, Angelopoulos, M, Arndt, A, Belter, HJ, Bessonov, V, Birnbaum, G, Brauchle, JB, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Divine, D, Fong, A, Fons, S, Fuchs, N, Gabarro, C, Gerland, S, Gradinger, R, Goessling, HF, Haapala, J, Haas, C, Hamilton, J, Hannula, HR, Hendricks, S, Herber, A, Heuze, C, Hoppmann, M, Hyland, KV, Huntemann, M, Hutchings, JK, Hwang, B, Itkin, P, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, G, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan, V, Niubom, A, Oggier, M, Oppelt, N, Patzold, F, Petrovsky, T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Sheikin, I, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky, V, Sokolov, V, Sokolova, J, Stanton, TP, Stroeve, J, Tavri, A, Thielke, L, Timofeeva, A, Tonboe, RT, Tsamados, M, Wagner, DN, Watkins, D, Webster, M, Wendisch, M. 2022. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10.1525/elementa.2021.000046.
Nixdorf, U, Dethloff, K, Rex, M, Shupe, M, Sommerfeld, A, Perovich, D, Nicolaus, M, Heuze, C, Rabe, B, Loose, B, Damm, E, Gradinger, R, Fong, A, Maslowski, W, Rinke, A, Kwok, R, Spreen, G, Wendisch, M, Herber, A, Hirsekorn, M, Mohaupt, V, Frickenhaus, S, Immerz, A, Weiss-Tuider, K, Konig, B, Mengedoht, D, Regnery, J, Gerchow, P, Ransby, D, Krumpen, T, Morgenstern, A, Haas, C, Kanzow, T, Rack, FR, Saitzev, V, Sokolov, V, Makarov, A, Schwarze, S, Wunderlich, T, Wurr, K, Boetius, A. 2021. MOSAiC extended acknowledgement. Zenodo. DOI: http://doi.org/10.5281/zenodo.5179739.
Nomura, D, Aoki, S, Simizu, D, Iida, T. 2018. Influence of sea ice crack formation on the spacial distribution of nutrients and microalgae in flooded Antarctic multi-year ice. Journal of Geophysical Research: Oceans 123(2): 939-951. DOI: http://doi.org/10.1002/2017JC012941.
Nomura, D, Kawaguchi, Y, Hoppmann, M, Damm, E, Li, Y. 2022. Profiles of temperature, salinity and dissolved oxygen measured by a handheld CTD in a lead during MOSAiC Leg PS122/5 to the central Arctic in August-September 2020. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.945337.
Nomura, D, Takatsuka, T, Ishikawa, M, Kawamura, T, Shirasawa, K, Yoshikawa-Inoue, H. 2009. Transport of chemical components in sea ice and under-ice water during melting in the seasonally ice-covered Saroma-ko Lagoon, Hokkaido, Japan. Estuarine, Coastal and Shelf Science 81: 201-209. DOI: https://doi.org/10.1016/j.ecss.2008.10.012.
Ólason, E, Rampal, P, Dansereau, V. 2021. On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic. The Cryosphere 15: 1053-1064. DOI: https://doi.org/10.5194/tc-15-1053-2021.
Østlund, HG, Hut, G. 1984. Arctic Ocean water mass balance from isotope data. Journal of Geophysical Research 89(C4): 6373-6381. DOI: http://doi.org/10.1029/JC089iC04p06373.
Parmentier, FJW, Christensen, TR, Srensen, LL, Rysgaard, S, McGuire, AD, Miller, PA, Walker, DA. 2013. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Climate Change 3: 195-202. DOI: http://doi.org/10.1038/nclimate1784.
Perovich, DK, Maykut, GA. 1990. Solar heating of a stratified ocean in the presence of an ice cover. Journal of Geophysical Research 95: 18233-18245. DOI: https://doi.org/10.1029/JC095iC10p18233.
Petrich, C, Langhorne, PJ, Haskell, TG. 2007. Formation and structure of refrozen cracks in land-fast first-year sea ice. Journal of Geophysical Research 112: C04006. DOI: http://doi.org/10.1029/2006JC003466.
Rabe, B, Heuze, C, Regnery, J, Aksenov, Y, Allerholt, J, Athanase, M, Bai, Y, Basque, C, Bauch, D, Baumann, TM, Chen, D, Cole, ST, Craw, L, Davies, A, Damm, E, Dethloff, K, Divine, DV, Doglioni, F, Ebert, F, Fang, Y-C, Fer, I, Fong, AA, Gradinger, R, Granskog, MA, Groupner, R, Haas, C, He, H, He, Y, Hoppmann, M, Janout, M, Kadko, D, Kanzow, T, Karam, S, Kawaguchi, Y, Koenig, Z, Kong, B, Krishfield, RA, Kuhlmey, D, Kuznetsov, I, Lan, M, Lei, R, Li, T, Torres-Valdes, S, Lin, L, Lin, L, Liu, H, Liu, N, Loose, B, Ma, X, MacKay, R, Mallet, M, Mallett, RDC, Maslowski, W, Mertens, C, Mohrholz, V, Muilwijk, M, Nicolaus, M, O'Brien, JK, Perovich, D, Ren, J, Rex, M, Ribeiro, N, Rinke, A, Schaffer, J, Schuffenhauer, I, Schulz, K, Shupe, MD, Shaw, W, Sommerfeld, A, Spreen, G, Stanton, T, Stephens, M, Su, J, Sukhikh, N, Sundfjord, A, Tippenhauer, S, Toole, JM, Vredenborg, M, Walter, M, Wang, H, Wang, L, Wang, Y, Wendisch, M, Zhao, J, Zhou, M, Zhu, J. 2022. Overview of the MOSAiC expedition: Physical oceanography. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10.1525/elementa.2021.00062.
Rabe, B, Karcher, M, Schauer, U, Toole, JM, Krishfield, RA, Pisarev, S, Kauker, F, Gerdes, R, Kikuchi, T. 2011. An assessment of Arctic Ocean meltwater content changes from the 1990s to the 2006-2008 period. Deep Sea Research Part I: Oceanographic Research Papers 58(2): 173-185. DOI: http://doi.org/10.1016/j.dsr.2010.12.002.
Rampal, P, Weiss, J, Dubois, C, Campin, J-M. 2011. IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research: Oceans 116: C00D07. DOI: http://doi.org/10.1029/2011JC007110.
Rex, M. 2021. Master tracks in different resolutions of POLARSTERN cruise PS122/5, Arctic Ocean - Bremerhaven, 2020-08-12-2020-10-12. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.926910.
Richter-Menge, JA, Perovich, DK, Pegau, WS. 2001. Summer ice dynamics during SHEBA and its effect on the ocean heat content. Annals of Glaciology 33: 201-206. DOI: https://doi.org/10.3189/172756401781818176.
Schmithüsen, H, Raeke, A, Wenzel, J. 2021. Meteorological observations during POLARSTERN cruise PS122/5. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.935267.
Schulz, K, Mohrholtz, V, Fer, I, Janout, M, Hoppman, M, Schaffer, J, Koenig, Z. 2022. A full year of turbulence measurements from a drift campaign in the Arctic Ocean 2019-2020. Scientific Data 9: 472. DOI: https://doi.org/10.1038/s41597-022-01574-1.
Shupe, MD, Rex, M, Blomquist, B, Persson, POG, Schmale, J, Uttal, T, Althausen, D, Angot, H, Archer, S, Bariteau, L, Beck, I, Bilberry, J, Bucci, S, Buck, C, Boyer, M, Brasseur, Z, Brooks, IM, Calmer, R, Cassano, J, Castro, V, Chu, D, Costa, D, Cox, CJ, Creamean, J, Crewell, S, Dahlke, S, Damm, E, de Boer, G, Deckelmann, H, Dethloff, K, Dutsch, M, Ebell, K, Ehrlich, A, Ellis, J, Engelmann, R, Fong, AA, Frey, MM, Gallagher, MR, Ganzeveld, L, Gradinger, R, Graeser, J, Greenamyer, V, Griesche, H, Griffiths, S, Hamilton, J, Heinemann, G, Helmig, D, Herber, A, Heuze, C, Hofer, J, Houchens, T, Howard, D, Inoue, J, Jacobi, H-W, Jaiser, R, Jokinen, T, Jourdan, O, Jozef, G, King, W, Kirchgaessner, A, Klingebiel, M, Krassovski, M, Krumpen, T, Lampert, A, Landing, W, Laurila, T, Lawrence, D, Lonardi, M, Loose, B, Lupkes, C, Maahn, M, Macke, A, Maslowski, W, Marsay, C, Maturilli, M, Mech, M, Morris, S, Moser, M, Nicolaus, M, Ortega, P, Osborn, J, Patzold, F, Perovich, DK, Petaja, T, Pilz, C, Pirazzini, R, Posman, K, Powers, H, Pratt, KA, Preuer, A, Quelever, L, Radenz, M, Rabe, B, Rinke, A, Sachs, T, Schulz, A, Siebert, H, Silva, T, Solomon, A, Sommerfeld, A, Spreen, G, Stephens, M, Stohl, A, Svensson, G, Uin, J, Viegas, J, Voigt, C, von der Gathen, P, Wehner, B, Welker, JM, Wendisch, M, Werner, M, Xie, ZQ, Yue, F. 2022. Overview of the MOSAiC expedition: Atmosphere. Elementa: Science of the Anthropocene 10(1). DOI: http://doi.org/10.1525/elementa.2021.00060.
Silyakova, A, Nomura, D, Kotovitch, M, Fransson, A, Delille, B, Chierici, M, Granskog, MA. 2022. Methane release from open leads and new ice following an Arctic winter storm event. Polar Science 33: 100874. DOI: https://doi.org/10.1016/j.polar.2022. 100874.
Smith, MM, von Albedyll, L, Raphael, IA, Lange, BA, Matero, I, Salganik, E, Webster, MA, Granskog, MA, Fong, A, Lei, R, Light, B. 2022. Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10.1525/elementa. 2021.000116.
Spreen, G, Kwok, R, Menemenlis, D. 2011. Trends in Arctic sea ice drift and role of wind forcing: 1992-2009. Geophysical Research Letters 38: L19501. DOI: http://doi.org/10.1029/2011GL 048970.
Steiner, NS, Lee, WG, Christian, JR. 2013. Enhanced gas fluxes in small sea ice leads and cracks: Effects on CO2 exchange and ocean acidification. Journal of Geophysical Research: Oceans 118: 1195-1205. DOI: http://doi.org/10.1002/jgrc.20100.
Stroeve, JC, Serreze, MC, Holland, MM, Kay, JE, Maslanik, J, Barrett, AP. 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change 110: 1005. DOI: http://doi.org/10.1007/s10584-011-0101-1.
Wilchinsky, AV, Heorton, HDBS, Feltham, D, Holland, PR. 2015. Study of the impact of ice formation in leads upon the sea ice pack mass balance using a new frazil and grease ice parameterization. Journal of Physical Oceanography 45(8): 2025-2047. DOI: https://doi.org/10.1175/JPO-D-14-0184.1.
Willis, MD, Leaitch, WR, Abbatt, JPD. 2018. Processes controlling the composition and abundance of Arctic aerosol. Review of Geophysics 56: 621-671. DOI: https://doi.org/10.1029/2018RG000602.
Zemmelink, HJ, Houghton, L, Dacey, JWH, Worby, AP, Liss, PS. 2005. Emission of dimethylsulfide from Weddell Sea leads. Geophysical Research Letters 32: L23610. DOI: http://doi.org/10.1029/2005GL 024242.