[en] The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet longlasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material.The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Smith, Madison M.; Woods Hole Oceanographic Institution, Woods Hole, United States
Angot, Hélène; Extreme Environments Research Laboratory, Ecole Polytechnique Federale de Lausanne Valais Wallis, Sion, Switzerland ; University of Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
Chamberlain, Emelia J.; Scripps Institution of Oceanography, University of California San Diego, San diego, United States
Droste, Elise S.; University of East Anglia, Norwich Research Park, Norwich, United Kingdom ; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Karam, Salar; Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Muilwijk, Morven; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Webb, Alison L.; University of Warwick, Coventry, United Kingdom ; University of York, York, United Kingdom
Archer, Stephen D.; Bigelow Laboratory for Ocean Sciences, East Boothbay, United States
Beck, Ivo; Extreme Environments Research Laboratory, Ecole Polytechnique Federale de Lausanne Valais Wallis, Sion, Switzerland
Blomquist, Byron W.; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, United States ; NOAA Physical Sciences Laboratory, Boulder, United States
Bowman, Jeff; Scripps Institution of Oceanography, University of California San Diego, San diego, United States
Boyer, Matthew; Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
Bozzato, Deborah; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
Chierici, Melissa; Institute of Marine Research, Tromsø, Norway
Creamean, Jessie; Colorado State University, Fort Collins, United States
D’Angelo, Alessandra; Graduate School of Oceanography, University of Rhode Island, Narragansett, United States
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Fer, Ilker; Geophysical Institute, University of Bergen, Bergen, Norway
Fong, Allison A.; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Fransson, Agneta; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Fuchs, Niels; Center for Earth System Sustainability, Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Gardner, Jessie; UiT-The Arctic University of Norway, Tromsø, Norway
Granskog, Mats A.; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Hoppe, Clara J.M.; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Hoppema, Mario; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Hoppmann, Mario; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Mock, Thomas; University of East Anglia, Norwich Research Park, Norwich, United Kingdom
Muller, Sofia ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU) ; PROPICE, Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Müller, Oliver; Department of Biological Sciences, University of Bergen, Bergen, Norway
Nicolaus, Marcel; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Nomura, Daiki; Hokkaido University, Hakodate, Japan
Petäjä, Tuukka; Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
Salganik, Evgenii; Norwegian Polar Institute, Fram Centre, Tromsø, Norway ; Norwegian University of Science and Technology, Trondheim, Norway
Schmale, Julia; Extreme Environments Research Laboratory, Ecole Polytechnique Federale de Lausanne Valais Wallis, Sion, Switzerland
Schmidt, Katrin; School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, United Kingdom
Schulz, Kirstin M.; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, United States
Shupe, Matthew D.; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, United States ; NOAA Physical Sciences Laboratory, Boulder, United States
Stefels, Jacqueline; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
Thielke, Linda; Institute of Environmental Physics, University of Bremen, Germany
Tippenhauer, Sandra; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
Ulfsbo, Adam; Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
van Leeuwe, Maria; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
Webster, Melinda; Polar Science Center, University of Washington, Seattle, United States
Yoshimura, Masaki; Hokkaido University, Hakodate, Japan
Zhan, Liyang; Third Institute of Oceanograhy, Ministry of Natural Resources, Xiamen, China
Some of this research was funded by the US National Science Foundation (awards OPP 1807496, 1914781, and 1807163), the Swiss National Science Foundation (grant 200021_188478), and the Swiss Polar Institute (grant DIRCR-2018-004). JS hold the Ingvar Kamprad chair for extreme environments research, sponsored by Ferring Pharmaceuticals.ESD was supported by NERC through the EnvEast Doctoral Training Partnership (NE/L002582/1), as well as NERC and the Department for Business, Energy & Industrial Strategy (BEIS) through the UK Arctic Office.MMS was funded by NSF OPP 2138787.MAW conducted this work under the National Science Foundation Project 2325430.MAG, MM and ES were funded through the HAVOC project by the Research Council of Norway, HAVOC, grant no 280292.LT was funded by the Deutsche Forschungsgemeinschaft DFG through the International Research Training Group IRTG 1904 ArcTrain grant 221211316.Data used in this manuscript were produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020 and the Project_ID: AWI_PS122_00. The authors thank all people involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019 2020 as listed in Nixdorf et al. (2021). They gratefully acknowledge helpful reviews from Haakon Hop and CJ Mundy which greatly improved the manuscript. MMS was funded by NSF OPP 2138787. JMC was funded by DE-SC0019745, DE-SC0022046, and DE-AC05-76RL01830. MAG, MM and ES were funded through the HAVOC project by the Research Council of Norway, HAVOC, grant no 280292. IF was funded through the AROMA project by the Research Council of Norway, grant no 294396. MAG and MM were funded by the European Union’s Horizon 2020 research and innovation programme, project CRiceS, grant no 101003826. LT was funded by the Deutsche Forschungsgemeinschaft DFG through the International Research Training Group IRTG 1904 ArcTrain grant 221211316. SK was funded by the Swedish Research Council, grant 2018-03859. AD, JB, and EJC were funded by NSF OPP 1821900, EJC was additionally funded by an NSF GRFP. DN and MY was funded by the Japan Society for the Promotion of Science 18H03745. ALWand KS were funded through the UK Natural Environment Research Council NERC Grants No NE/S002596/ 1 and NE/S002502/1, respectively. DB was supported by the Netherlands Polar Programme (NWO), Project no 866.18.002. SM and BD are PhD student and research associate, respectively, of the F.R.S.-FNRS and are founded by the F.R.S.-FNRS Project J.0051.20. NF is funded through the BMBF project NiceLABpro (grant 03F0867A). MDS was supported by the US National Science Foundation (OPP-1724551), NOAA Global Ocean Monitoring and Observing Program (FundRef DOI: http://dx.doi.org/ 10.13039/100018302), and NOAA cooperative agreement (NA22OAR4320151). The Chinese program for MOSAiC was funded by the CAA. TM acknowledges funding from the UK Natural Environment Research Council (NERC) grant NE/W005654/1. ESD was supported by NERC through the EnvEast Doctoral Training Partnership (NE/L002582/1), as well as NERC and the Department for Business, Energy & Industrial Strategy (BEIS) through the UK Arctic Office. Some of this research was funded by the US National Science Foundation (awards OPP 1807496, 1914781, and 1807163), the Swiss National Science Foundation (grant 200021_188478), and the Swiss Polar Institute (grant DIRCR-2018-004). JS hold the Ingvar Kamprad chair for extreme environments research, sponsored by Ferring Pharmaceuticals. MAW conducted this work under the National Science Foundation Project 2325430.The Chinese program for MOSAiC was funded by the CAA.AD, JB, and EJC were funded by NSF OPP 1821900, EJC was additionally funded by an NSF GRFP.MDS was supported by the US National Science Foundation (OPP-1724551), NOAA Global Ocean Monitoring and Observing Program (FundRef DOI: http://dx.doi.org/10.13039/100018302 ), and NOAA cooperative agreement (NA22OAR4320151).SK was funded by the Swedish Research Council, grant 2018-03859.NF is funded through the BMBF project NiceLABpro (grant 03F0867A).TM acknowledges funding from the UK Natural Environment Research Council (NERC) grant NE/W005654/1.DN and MY was funded by the Japan Society for the Promotion of Science 18H03745.DB was supported by the Netherlands Polar Programme (NWO), Project no 866.18.002.MAG and MM were funded by the European Union’s Horizon 2020 research and innovation programme, project CRiceS, grant no 101003826.ALW and KS were funded through the UK Natural Environment Research Council NERC Grants No NE/S002596/1 and NE/S002502/1, respectively.JMC was funded by DE-SC0019745, DE-SC0022046, and DE-AC05-76RL01830.IF was funded through the AROMA project by the Research Council of Norway, grant no 294396.
Aarset, AV, Aunaas, T. 1990. Influence of environmental salinity on oxygen consumption and ammonia excretion of the arctic under-ice amphipod Onisimus glacialis. Marine Biology 107: 9-15. DOI: http://dx.doi.org/10.1007/BF01313237.
Abdullahi, AS, Underwood, GJC, Gretz, MR. 2006. Extracellular matrix assembly in diatoms Bacillariophyceae. V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. Journal of Phycology 42(2): 363-378. DOI: http://dx.doi.org/10.1111/j.1529-8817.2006.00193.x.
Alexandrov, DV, Nizovtseva, IG. 2008. To the theory of underwater ice evolution, or nonlinear dynamics of “false bottoms.” International Journal of Heat and Mass Transfer 51(21-22): 5204-5208. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.061.
Allen, MB. 1971. High-latitude phytoplankton. Annual Review of Ecology and Systematics 2: 261-276. DOI: http://dx.doi.org/10.1146/annurev.es.02.110171.001401.
Alou-Font, E, Mundy, CJ, Roy, S, Gosselin, M, Agusti, S. 2013. Snow cover affects ice algal pigment composition in the coastal Arctic Ocean during spring. Marine Ecology Progress Series 474: 89-104. DOI: http://dx.doi.org/10.3354/meps10107.
Antoni, JS, Almandoz, GO, Ferrario, ME, Hernando, MP, Varela, DE, Rozema, PD, Buma, AGJ, Paparazzo, FE, Schloss, IR. 2020. Response of a natural Antarctic phytoplankton assemblage to changes in temperature and salinity. Journal of Experimental Marine Biology and Ecology 532: 151444. DOI: http://dx.doi.org/10.1016/j.jembe.2020.151444.
Apollonio, S. 1980. Primary production in Dumbell Bay in the Arctic Ocean. Marine Biology 61: 41-51. DOI: http://dx.doi.org/10.1007/BF00410340.
Apollonio, S. 1985. Arctic marine phototrophic systems: Functions of sea ice stabilization. Arctic 38(3): 167-260. DOI: https://dx.doi.org/10.14430/arctic2129.
Apollonio, S, Matrai, P. 2011. Marine primary production in the Canadian Arctic, 1956, 1961-1963. Polar Biology 34: 767-774. DOI: http://dx.doi.org/10.1007/s00300-010-0928-3.
Arrigo, KR, Sullivan, CW. 1992. The influence of salinity and temperature covariation on the photophyisiological characteristics of Antarctic sea ice microalgae. Journal of Phycology 28(6): 746-756. DOI: http://dx.doi.org/10.1111/j.0022-3646.1992.00746.x.
Aslam, SN, Cresswell-Maynard, T, Thomas, DN, Underwood, GJ. 2012. Production and characterization of the intra-and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. Journal of Phycology 48(6): 1494-1509. DOI: http://dx.doi.org/10.1111/jpy.12004.
Assmy, P, Ehn, JK, Fernández-Méndez, M, Hop, H, Katlein, C, Sundfjord, A, Bluhm, K, Daase, M, Engel, A, Fransson, A, Granskog, MA, Hudson, SR, Kristiansen, S, Nicolaus, M, Peeken, I, Renner, AHH, Spreen, G, Tatarek, A, Wiktor, J. 2013. Floating ice-algal aggregates below melting Arctic sea ice. PLoS One 8(10): e76599. DOI: http://dx.doi.org/10.1371/journal.pone.0076599.
Baccarini, A, Karlsson, L, Dommen, J, Duplessis, P, Vüllers, J, Brooks, IM, Saiz-Lopez, A, Salter, M, Tjernström, M, Baltensperger, U, Zieger, P, Schmale, J. 2020. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications 11: 4924. DOI: http://dx.doi.org/10.1038/s41467-020-18551-0.
Bates, NR, Mathis, JT. 2009. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6: 2433-2459. DOI: http://dx.doi.org/10.5194/bg-6-2433-2009.
Bates, NR, Moran, SB, Hansell, DA, Mathis, JT. 2006. An increasing CO2 sink in the Arctic Ocean due to seaice loss. Geophysical Research Letters 33(23). DOI: https://dx.doi.org/10.1029/2006GL027028.
Bauerfeind, E, Garrity, C, Krumbholz, M, Ramseier, RO, Voß, M. 1997. Seasonal variability of sediment trap collections in the Northeast Water Polynya. Part 2. Biochemical and microscopic composition of sedimenting matter. Journal of Marine Systems 10(1-4): 371-389. DOI: http://dx.doi.org/10.1016/S0924-7963(96)00069-3.
Behrenfeld, MJ, Halsey, KH, Milligan, AJ. 2008. Evolved physiological responses of phytoplankton to their integrated growth environment. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1504): 2687-2703. DOI: http://dx.doi.org/10.1098/rstb.2008.0019.
Bélanger, S, Cizmeli, SA, Ehn, J, Matsuoka, A, Doxaran, D, Hooker, S, Babin, M. 2013. Light absorption and partitioning in Arctic Ocean surface waters: Impact of multiyear ice melting. Biogeosciences 10(10): 6433-6452. DOI: http://dx.doi.org/10.5194/bg-10-6433-2013.
Boetius, A, Albrecht, S, Bakker, K, Bienhold, C, Felden, J, Fernández-Méndez, M, Hendricks, S, Katlein, C, Lalande, C, Krumpen, T, Nicolaus, M, Peeken, N, Rabe, B, Rogacheva, A, Rybakova, E, Somavilla, R,Wenzhöfer, F, RV Polarstern ARK27-3-Shipboard Science Party. 2013. Export of algal biomass from the melting Arctic sea ice. Science 339(6126): 1430-1432. DOI: http://dx.doi.org/10.1126/science.1231346.
Boetius, A, Anesio, AM, Deming, JW, Mikucki, JA, Rapp, JZ. 2015. Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nature Reviews Microbiology 13(11): 677-690. DOI: http://dx.doi.org/10.1038/nrmicro3522.
Bowman, JS. 2015. The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns. Elementa: Science of the Anthropocene 3: 000072. DOI: http://dx.doi.org/10.12952/journal.elementa.000072.
Bowman, JS, Van Mooy, BA, Lowenstein, DP, Fredricks, HF, Hansel, CM, Gast, R, Collins, JR, Couto, N, Ducklow, HW. 2021. Whole community metatranscriptomes and lipidomes reveal diverse responses among Antarctic phytoplankton to changing ice conditions. Frontiers in Marine Science 8: 593566. DOI: http://dx.doi.org/10.3389/fmars.2021.593566.
Brinkmeyer, R, Glöckner, FO, Helmke, E, Amann, R. 2004. Predominance of b-proteobacteria in summer melt pools on Arctic pack ice. Limnology and Oceanography 49(4): 1013-1021. DOI: http://dx.doi.org/10.4319/lo.2004.49.4.1013.
Bursa, A. 1963. Phytoplankton in coastal waters of the Arctic Ocean at Point Barrow, Alaska. Arctic 16(4): 239-262. DOI: http://dx.doi.org/10.14430/arctic3544.
Butterworth, BJ, Miller, SD. 2016. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophysical Research Letters 43(13): 7223-7230. DOI: http://dx.doi.org/10.1002/2016GL069581.
Calmer, R, de Boer, G, Hamilton, J, Lawrence, D,Webster, MA, Wright, N, Shupe, MD, Cox, CJ, Cassano, JJ. 2023. Relationships between summertime surface albedo and melt pond fraction in the central Arctic Ocean: The aggregate scale of albedo obtained on the MOSAiC floe. Elementa: Science of the Anthropocene 11(1): 00001. DOI: http://dx.doi.org/10.1525/elementa.2023.00001.
Carmack, EC. 2000. The Arctic ocean’s freshwater budget: Sources, storage and export, in Lewis, EL, Jones, EP, Lemke, P, Prowse, TD,Wadhams, P eds., The freshwater budget of the Arctic ocean. Dordrecht, the Netherlands: Springer. (NATO science series, vol. 70). DOI: http://dx.doi.org/10.1007/978-94-011-4132-1_5.
Carmack, EC. 2007. The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Research Part II: Topical Studies in Oceanography 54(23-26): 2578-2598. DOI: http://dx.doi.org/10.1016/j.dsr2.2007.08.018.
Chamberlain EJ, Balmonte JP, Torstensson A, Fong AA, Snoeijs-Leijonmalm P, Bowman JS. 2022. Impacts of sea ice melt procedure on measurements of microbial community structure. Elementa: Science of the Anthropocene 10(1): 00017. DOI: http://dx.doi.org/10.1525/elementa.2022.00017.
Chen, Q, Mirrielees, JA, Thanekar, S, Loeb, NA, Kirpes, RM, Upchurch, LM, Barget, AJ, Lata, NN, Raso, AR, McNamara, SM, China, S. 2022. Atmospheric particle abundance and sea salt aerosol observations in the springtime Arctic: A focus on blowing snow and leads. Atmospheric Chemistry and Physics 22(23): 15263-15285. DOI: http://dx.doi.org/10.5194/acp-22-15263-2022.
Chierici, M, Fransson, A. 2009. Calcium carbonate saturation in the surface water of the Arctic Ocean: Undersaturation in freshwater influenced shelves. Biogeosciences 6(11): 2421-2432. DOI: http://dx.doi.org/10.5194/bg-6-2421-2009.
Chierici M, Vernet, M, Fransson, A, Børsheim, Y. 2019. Net community production and carbon exchange from winter to summer in the Atlantic water inflow to the Arctic Ocean. Frontiers in Marine Science 6: 528. DOI: http://dx.doi.org/10.3389/fmars.2019.00528.
Codispoti, LA, Richards, FA. 1971. Oxygen supersaturations in the Chukchi and East Siberian seas. Deep Sea Research and Oceanographic Abstracts 18(3): 341-351. DOI: http://dx.doi.org/10.1016/0011-7471(71)90039-8.
Creamean, JM, Barry, K, Hill, TC, Hume, C, DeMott, PJ, Shupe, MD, Dahlke, S, Willmes, S, Schmale, J, Beck, I, Hoppe, CJ. 2022. Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Nature Communications 13: 3537. DOI: http://dx.doi.org/10.1038/s41467-022-31182-x.
Crews, L, Lee, CM, Rainville, L, Thomson, J. 2022. Direct observations of the role of lateral advection of sea ice meltwater in the onset of autumn freeze up. Journal of Geophysical Research 127(2): e2021JC017775. DOI: http://dx.doi.org/10.1029/2021JC017775.
Curson, AR, Liu, J, Bermejo Martínez, A, Green, RT, Chan, Y, Carrión, O, Williams, BT, Zhang, SH, Yang, GP, Bulman Page, PC, Zhang, XH. 2017. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology 2: 17009. DOI: http://dx.doi.org/10.1038/nmicrobiol.2017.9.
Damm, E, Bauch, D, Krumpen, T, Rabe, B, Korhonen, M, Vinogradova, E, Uhlig, C. 2018. The Transpolar Drift conveys methane from the Siberian Shelf to the central Arctic Ocean. Scientific Reports 8: 4515. DOI: http://dx.doi.org/10.1038/s41598-018-22801-z.
Damm, E, Rudels, B, Schauer, U, Mau, S, Dieckmann, G. 2015. Methane excess in Arctic surface water-triggered by sea ice formation and melting. Scientific Reports 5: 16179. DOI: http://dx.doi.org/10.1038/srep16179.
Danabasoglu, G, Lamarque, JF, Bacmeister, J, Bailey, DA, DuVivier, AK, Edwards, J, Emmons, LK, Fasullo, J, Garcia, R, Gettelman, A, Hannay, C, Holland, MM, Large, WG, Lauritzen, PH, Lawrence, DM, Lenaerts, JTM, Lindsay, K, Lipscomb, WH, Mills, MJ, Neale, R, Oleson, KW, Otto-Bliesner, B, Phillips, AS, Sacks, W, van Kampenhout, STL, Vertenstein, M, Bertini, A, Denni, J, Deser, C, Fischer, C, Fox-Kemper, B, Kay, JE, Kinnison, D, Kushner, PJ, Larson, VE, Long, MC, Mickelson, S, Moore, JK, Nienhouse, E, Polvani, L, Rasch, PJ, Strand, WG. 2020. The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems 12(2): e2019MS001916. DOI: http://dx.doi.org/10.1029/2019MS001916.
Decho, AW, Gutierrez, T. 2017. Microbial extracellular polymeric substances EPSs in ocean systems. Frontiers in Microbiology 8: 922. DOI: http://dx.doi.org/10.3389/fmicb.2017.00922.
Delille, B, Vancoppenolle, M, Geilfus, N-X, Tilbrook, B, Lannuzel, D, Schoemann, V, Becquevort, S, Carnat, G, Delille, D, Lancelot, C, Chou, L, Dieckmann, GS, Tison, J-L. 2014. Southern Ocean CO2sink: The contribution of the sea ice. Journal of Geophysical Research 119(9): 6340-6355. DOI: http://dx.doi.org/10.1002/2014JC009941.
Denfeld, BA, Baulch, HM, del Giorgio, PA, Hampton, SE, Karlsson, J. 2018. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnology and Oceanography Letters 3(3): 117-131. DOI: http://dx.doi.org/10.1002/lol2.10079.
Divine DV, Pedersen, CA, Karlsen, TI, Aas, HF, Granskog, MA, Hudson, SR, Gerland, S. 2016. Photogrammetric retrieval and analysis of small scale sea ice topography during summer melt. Cold Regions Science and Technolgy 129: 77-84. DOI: http://dx.doi.org/10.1016/j.coldregions.2016.06.006.
Dong,Y,Yang, M, Bakker, DC, Liss, PS, Kitidis,V, Brown, I, Chierici, M, Fransson, A, Bell, TG. 2021. Nearsurface stratification due to ice melt biases Arctic air-sea CO2 flux estimates. Geophysical Research Letters 48(22): e2021GL095266. DOI: http://dx.doi.org/10.1029/2021GL095266.
Edwards, A, Cameron, KA, Cook, JM, Debbonaire, AR, Furness, E, Hay, MC, Rassner, SM. 2020. Microbial genomics amidst the Arctic crisis. Microbial Genomics 6(5): e000375. DOI: http://dx.doi.org/10.1099/mgen.0.000375.
Ehn, JK, Mundy, CJ, Barber, DG, Hop, H, Rossnagel, A, Stewart, J. 2011. Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. Journal of Geophysical Research 116: C00G02. DOI: http://dx.doi.org/10.1029/2010JC006908.
Eicken, H. 1994. Structure of under-ice melt ponds in the central Arctic and their effect on, the sea-ice cover. Limnology and Oceanography 39(3): 682-693. DOI: http://dx.doi.org/10.4319/lo.1994.39.3.0682.
Eicken, H, Grenfell, TC, Perovich, DK, Richter-Menge, JA, Frey, K. 2004. Hydraulic controls of summer Arctic pack ice albedo. Journal of Geophysical Research 109(C8): C08007. DOI: http://dx.doi.org/10.1029/2003JC001989.
Eicken, H, Krouse, HR, Kadko, D, Perovich, DK. 2002. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. Journal of Geophysical Research 107(C10): 8046. DOI: http://dx.doi.org/10.1029/2000JC000583.
Elliott, A, Mundy, CJ, Gosselin, M, Poulin, M, Campbell, K, Wang, F. 2015. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Marine Ecology Progress Series 541: 91-104. DOI: http://dx.doi.org/10.3354/meps11540.
Else, BGT, Papkyriakou, TN, Asplin, MG, Barber, DG, Galley, RJ, Miller, LA, Mucci, A. 2013. Annual cycle of air-sea CO2 exchange in an Arctic Polynya Region. Global Biogeochemical Cycles 27: 388-398. DOI: http://dx.doi.org/10.1002/gbc.20016.
Eveleth, R, Timmermans, M-L, Cassar, N. 2014. Physical and biological controls on oxygen saturation variability in the upper Arctic Ocean. Journal of Geophysical Research 119(11): 7420-7432. DOI: http://dx.doi.org/10.1002/2014JC009816.
Ewert, M, Deming JW. 2014. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiology Ecology 89(2): 476-489. DOI: http://dx.doi.org/10.1111/1574-6941.12363.
Farrell, SL, Duncan, K, Buckley, EM, Richter-Menge, J, Li, R. 2020. Mapping sea ice surface topography in high fidelity with ICESat-2. Geophysical Research Letters 47(21): e2020GL090708. DOI: http://dx.doi.org/10.1029/2020GL090708.
Fenwick, L, Capelle, D, Damm, E, Zimmermann, S,Williams, WJ,Vagle, S, Tortell, PD. 2017. Methane and nitrous oxide distributions across the North American Arctic Ocean during summer, 2015. Journal of Geophysical Research 122(1): 390-412. DOI: http://dx.doi.org/10.1002/2016JC012493.
Fer, I, Baumann, T, Fang, Y-C, Hoppmann, M, Karam, S, Koenig, Z, Kuznetsov, I, Muilwijk, M, Schulz, K, Schaffer, J, Sukhikh, N, Tippenhauer, S. 2022b. Under-ice temperature and dissipation rate profiles from uprising VMP250 during MOSAiC. PANGAEA[data set]. DOI: http://dx.doi.org/10.1594/PANGAEA.946076.
Fer, I, Baumann, T, Koenig, Z, Muilwijk, M, Tippenhauer, S. 2022a. Upper-ocean turbulence structure and ocean-ice drag coefficient estimates using an ascending microstructure profiler during the MOSAiC drift. Journal of Geophysical Research 127(9): e2022JC018751. DOI: http://dx.doi.org/10.1029/2022JC018751.
Fernández-Méndez, M, Turk-Kubo, KA, Buttigieg, PL, Rapp, JZ, Krumpen, T, Zehr, JP, Boetius, A. 2016. Diazotroph diversity in the sea ice, melt ponds, and surface waters of the Eurasian Basin of the Central Arctic Ocean. Frontiers in Microbiology 7: 1884. DOI: http://dx.doi.org/10.3389/fmicb.2016.01884.
Fernández-Méndez, M,Wenzhöfer, F, Peeken, I, Sørensen, HL, Glud, RN, Boetius, A. 2014. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS One 9(9): e107452. DOI: http://dx.doi.org/10.1371/journal.pone.0107452.
Fetterer, F, Untersteiner, N. 1998. Observations of melt ponds on Arctic sea ice. Journal of Geophysical Research 103(C11): 24821-24835. DOI: http://dx.doi.org/10.1029/98JC02034.
Fransson, A, Chierici, M, Anderson, LG, Bussman, I, Jones, EP, Swift, JH. 2001. The importance of shelf processes for the modification of chemical constituents in the waters of the eastern Arctic Ocean: Implication for carbon fluxes. Continental Shelf Research 21: 225-242. DOI: http://dx.doi.org/10.1016/S0278-4343(00)00088-1.
Fransson, A, Chierici, M, Nojiri, Y. 2009. New insights into the spatial variability of the surface water CO2in varying sea ice conditions in the Arctic Ocean. Continental Shelf Research 29(10): 1317-1328. DOI: http://dx.doi.org/10.1016/j.csr.2009.03.008.
Fransson, A, Chierici, M, Yager, P, Smith, WO. 2011. Antarctic sea ice carbon dioxide system and controls. Journal of Geophysical Research 116: C12035. DOI: http://dx.doi.org/10.1029/2010JC006844.
Galí, M, Devred, E, Babin, M, Levasseur, M. 2019. Decadal increase in Arctic dimethylsulfide emission. Proceedings of the National Academy of Sciences 116(39): 19311-19317. DOI: http://dx.doi.org/10.1073/pnas.1904378116.
Galí, M, Lizotte, M, Kieber, DJ, Randelhoff, A, Hussherr, R, Xue, L, Dinasquet, J, Babin, M, Rehm, E, Levasseur, M. 2021. DMS emissions from the Arctic marginal ice zone. Elementa: Science of the Anthropocene 9(1): 00113. DOI: http://dx.doi.org/10.1525/elementa.2020.00113.
Galí, M, Simó, R. 2010. Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge. Marine Chemistry 122(1-4): 105-117. DOI: http://dx.doi.org/10.1016/j.marchem.2010.07.003.
Galindo, V, Levasseur, M, Scarratt, M, Mundy, CJ, Gosselin, M, Kiene, RP, Gourdal, M, Lizotte, M. 2015. Under-ice microbial dimethylsulfoniopropionate metabolism during the melt period in the Canadian Arctic Archipelago. Marine Ecology Progress Series 524: 39-53. DOI: http://dx.doi.org/10.3354/meps11144.
Geilfus, N-X, Galley, RJ, Crabeck, O, Papakyriakou, T, Landy, J, Tison J-L, Rysgaard, S. 2015. Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic. Biogeosciences 12(6): 2047-2061. DOI: http://dx.doi.org/10.5194/bg-12-2047-2015.
Glud, RN, Rysgaard, S, Kühl, M. 2002. A laboratory study on O2 dynamics and photosynthesis in ice algal communities: Quantification by microsensors, O2exchange rates, 14C incubations and a PAM fluorometer. Aquatic Microbial Ecology 27(3): 301-311. DOI: http://dx.doi.org/10.3354/ame027301.
Glud, RN, Rysgaard, S, Turner, G, McGinnis, DF, Leakey, RJG. 2014. Biological-and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnology and Oceanography 59(4): 1097-1111. DOI: http://dx.doi.org/10.4319/lo.2014.59.4.1097.
Golovin, PN, Ivanov, VV. 2015. Density stratification effects on the ice lead heat balance and perennial ice melting in the Central Arctic. Russian Meteorology and Hydrology 401: 46-59. DOI: http://dx.doi.org/10.3103/S1068373915010070.
Goreau, TJ, Kaplan, WA, Wofsy, SC, McElroy, MB, Valois, FW,Watson, SW. 1980. Production of NO2_and N2O by nitrifying bacteria at reduced concentrations of oxygen. Applied and Environmental Microbiology 40(3): 526-532. DOI: http://dx.doi.org/10.1128/aem.40.3.526-532.1980.
Gourdal, M, Lizotte, M, Massé, G, Gosselin, M, Poulin, M, Scarratt, M, Charette, J, Levasseur, M. 2018. Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago. Biogeosciences 15(10): 3169-3188. DOI: http://dx.doi.org/10.5194/bg-15-3169-2018.
Gradinger, R. 1996. Occurrence of an algal bloom under Arctic pack ice. Marine Ecology Progress Series 131: 301-305. DOI: http://dx.doi.org/10.3354/meps131301.
Grainger, EH, Mohammed, AA. 1990. High salinity tolerance in sea ice copepods. Ophelia 313: 177-185. DOI: http://dx.doi.org/10.1080/00785326.1990.10430860.
Granskog, MA, Pavlov, AK, Sagan, S, Kowalczuk, P, Raczkowska, A, Stedmon, CA. 2015. Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. Journal of Geophysical Research 120(10): 7028-7039. DOI: http://dx.doi.org/10.1002/2015JC011087.
Grant,WS, Horner, RA. 1976. Growth responses to salinity variation in four Arctic ice diatoms. Journal of Phycology 12(2): 180-185. DOI: http://dx.doi.org/10.1111/j.1529-8817.1976.tb00498.x.
Grossart, HP, Massana, R, McMahon, KD, Walsh, DA. 2020. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnology and Oceanography 65(S1): S2-S20. DOI: http://dx.doi.org/10.1002/lno.11382.
Ha, S-Y, Min, J-O, Joo, HM, Chung, KH, Shin, K-H, Yang, E, Kang, S-H. 2014. Production rate estimation of mycosporine-like amino acids in two Arctic melt ponds by stable isotope probing with NAH13CO3. Journal of Phycology 50(5): 901-907. DOI: http://dx.doi.org/10.1111/jpy.12221.
Hancke, K, Kristiansen, S, Lund-Hansen, LC. 2022. Highly productive ice algal mats in Arctic melt ponds: Primary production and carbon turnover. Frontiers in Marine Science 9: 841720. DOI: http://dx.doi.org/10.3389/fmars.2022.841720.
Hanson, AM. 1965. Studies of the mass budget of Arctic pack-ice floes. Journal of Glaciology 5(41): 701-709. DOI: http://dx.doi.org/10.3189/S0022143000018694.
Hartmann, M, Gong, X, Kecorius, S, van Pinxteren, M, Vogl, T, Welti, A, Wex, H, Zeppenfeld, S, Herrmann, H, Wiedensohler, A, Stratmann, F. 2021. Terrestrial or marine-Indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7_N. Atmospheric Chemistry and Physics 21(15): 11613-11636. DOI: http://dx.doi.org/10.5194/acp-21-11613-2021.
Hatam, I, Lange, B, Beckers, J, Haas, C, Lanoil, B. 2016. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. The ISME Journal 10(10): 2543-2552. DOI: http://dx.doi.org/10.1038/ismej.2016.4.
Hernando, M, Schloss, IR, Almandoz, GO, Malanga, G, Varela, DE, De Troch, M. 2018. Combined effects of temperature and salinity on fatty acid content and lipid damage in Antarctic phytoplankton. Journal of Experimental Marine Biology and Ecology 503: 120-128. DOI: http://dx.doi.org/10.1016/j.jembe.2018.03.004.
Hernando, M, Schloss, IR, Malanga, G, Almandoz, GO, Ferreyra, GA, Aguiar, MB, Puntarulo, S. 2015. Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. Journal of Experimental Marine Biology and Ecology 466: 110-119. DOI: http://dx.doi.org/10.1016/j.jembe.2015.02.012.
Hop, H, Mundy, CJ, Gosselin, M, Rossnagel, AL, Barber, DG. 2011. Zooplankton boom and ice amphipod bust below melting sea ice in the Amundsen Gulf, Arctic Canada. Polar Biology 34(12): 1947-1958. DOI: http://dx.doi.org/10.1007/s00300-011-0991-4.
Hoppmann, M, Richter, ME, Smith, IJ, Jendersie, S, Langhorne, PJ, Thomas, DN, Dieckmann, GS. 2020. Platelet ice, the Southern Ocean’s hidden ice: A review. Annals of Glaciology 61(83): 341-368. DOI: http://dx.doi.org/10.1017/aog.2020.54.
Horvat, C, Tziperman, E, Campin, JM. 2016. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophysical Research Letters 43(15): 8083-8090. DOI: http://dx.doi.org/10.1002/2016GL069742.
Hudson, SR, Granskog, MA, Sundfjord, A, Randelhoff, A, Renner, AH, Divine, DV. 2013. Energy budget of first-year Arctic sea ice in advanced stages of melt. Geophysical Research Letters 40(11): 2679-2683. DOI: http://dx.doi.org/10.1002/grl.50517.
Itkin, P, Hendricks, S, Webster, M, von Albedyll, L, Arndt, S, Divine, D, Jaggi, M, Oggier, M, Raphael, I, Ricker, R, Rohde, J, Schneebeli, M, Liston, GE. 2023. Sea ice and snow characteristics from yearlong transects at the MOSAiC Central Observatory. Elementa: Science of the Anthropocene 11(1). DOI: http://dx.doi.org/10.1525/elementa.2022.00048.
Itkin, P, Spreen, G, Cheng, B, Doble, M, Girard-Ardhuin, F, Haapala, J, Hughes, N, Kaleschke, L, Nicolaus, M, Wilkinson, J. 2017. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE 2015. Journal of Geophysical Research 122(6): 4661-4674. DOI: http://dx.doi.org/10.1002/2016JC012403.
James, RH, Bousquet, P, Bussmann, I, Haeckel, M, Kipfer, R, Leifer, I, Niemann, H, Ostrovsky, I, Piskozub, J, Rehder, G, Treude, T, Vielstädte, L, Greinert, J. 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnology and Oceanography 61: S283-S299. DOI: http://dx.doi.org/10.1002/lno.10307.
JCOMM Expert Team on Sea Ice. 2014. Sea-Ice Nomenclature: Snapshot of the WMO Sea Ice Nomenclature WMO No. 259, volume 1-Terminology and Codes; Volume II-Illustrated Glossary and III-International System of Sea-Ice Symbols. Geneva, Switzerland: WMO-JCOMM: 1-121 (WMO-No. 259 I-III). DOI: http://dx.doi.org/10.25607/OBP-1515.
Jeffries, MO, Schwartz, K, Morris, K, Veazey, AD, Krouse, HR, Gushing, S. 1995. Evidence for platelet ice accretion in Arctic sea ice development. Journal of Geophysical Research 100(C6): 10905-10914. DOI: http://dx.doi.org/10.1029/95JC00804.
Jørgensen, L, Stedmon, CA, Kaartokallio, H, Middelboe, M, Thomas, DN. 2015. Changes in the composition and bioavailability of dissolved organic matter during sea ice formation. Limnology and Oceanography 60(3): 817-830. DOI: http://dx.doi.org/10.1002/lno.10058.
Juhl, AR, Krembs, C. 2010. Effects of snow removal and algal photoacclimation on growth and export of ice algae. Polar Biology 33: 1057_1065. DOI: http://dx.doi.org/10.1007/s00300-010-0784-1.
Juhl, AR, Krembs, C, Meiners, KM. 2011. Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Marine Ecology Progress Series 436: 1-16. DOI: http://dx.doi.org/10.3354/meps09277.
Junge K, Eicken H, Deming JW. 2004. Bacterial activity at _2 to _20_C in Arctic wintertime sea ice. Applied and Environmental Microbiology 70(1): 550-557. DOI: http://dx.doi.org/10.1128/AEM.70.1.550-557.2004.
Kadko, D. 2000. Modeling the evolution of the Arctic mixed layer during the fall 1997 Surface Heat Budget of the Arctic Ocean (SHEBA) Project using measurements of 7Be. Journal of Geophysical Research 105(C2): 3369-3378. DOI: http://dx.doi.org/10.1029/1999JC900311.
Karam, S, Tippenhauer, S, Allerholt, J, Hoppmann, M, Koenig, Z, Muilwijk, M, Schuffenhauer, I, Schulz, K. 2023. Physical oceanography measurements from a hand-held CTD during Leg 4 and 5 of POLARSTERN cruise PS122-MOSAiC. PANGAEA [data set]. DOI: http://dx.doi.org/10.1594/PANGAEA.956142.
Karlsson, J, Giesler, R, Persson, J, Lundin, E. 2013. High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophysical Research Letters 40(6): 1123-1127. DOI: http://dx.doi.org/10.1002/grl.50152.
Katlein, C, Schiller, M, Belter, HJ, Coppolaro, V, Wenslandt, D, Nicolaus, M. 2017. A new remotely operated sensor platform for interdisciplinary observations under sea ice. Frontiers in Marine Science 4: 281. DOI: http://dx.doi.org/10.3389/fmars.2017.00281.
Kauko, HM, Taskjelle, T, Assmy, P, Pavlov, AK, Mundy, CJ, Duarte, P, Fernández-Méndez, M, Olsen, LM, Hudson, SR, Johnsen, G, Elliot, A,Wang, F, Granskog, MA. 2017. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead. Journal of Geophysical Research 122(6): 1486-1505. DOI: https://doi.org/10.1002/2016JG003626.
Kawaguchi, Y, Koenig, Z, Nomura, D, Hoppmann, M, Inoue, J, Fang, YC, Schulz, K, Gallagher, M, Katlein, C, Nicolaus, M, Rabe, B. 2022. Turbulent mixing during late summer in the ice-ocean boundary layer in the Central Arctic Ocean: Results from the MOSAiC expedition. Journal of Geophysical Research 127(8): e2021JC017975. DOI: http://dx.doi.org/10.1029/2021JC017975.
Kirillov, S, Dmitrenko, I, Rysgaard, S, Babb, D, Ehn, J, Bendtsen, J, Boone, W, Barber, D, Geilfus, N. 2018. The inferred formation of a subice platelet layer below the multiyear landfast sea ice in the Wandel Sea (NE Greenland) induced by meltwater drainage. Journal of Geophysical Research 123(5): 3489-3506. DOI: http://dx.doi.org/10.1029/2017JC013672.
Kirpes, RM, Bonanno, D, May, NW, Fraund, M, Barget, AJ, Moffet, RC, Ault, AP, Pratt, KA. 2019. Wintertime Arctic sea spray aerosol composition controlled by sea ice lead microbiology. ACS Central Science 5(11): 1760-1767. DOI: http://dx.doi.org/10.1021/acscentsci.9b00541.
Kirst, GO. 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology 40: 21-53. DOI: http://dx.doi.org/10.1146/annurev.pp.41.060190.000321.
Kitidis, V, Upstill-Goddard, RC, Anderson, LG. 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Marine Chemistry 121: 80-86. DOI: http://dx.doi.org/10.1016/j.marchem.2010.03.006.
König, M, Oppelt, N. 2020. A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data. The Cryosphere 14(8): 2567-2579. DOI: http://dx.doi.org/10.5194/tc-14-2567-2020.
Krembs, C, Eicken, H, Junge, K, Deming, JW. 2002. High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Research Part I: Oceanographic Research Papers 49(12): 2163-2181. DOI: http://dx.doi.org/10.1016/S0967-0637(02)00122-X.
Krumpen, T, Birrien, F, Kauker, F, Rackow, T, von Albedyll, L, Angelopoulos, M, Belter, HJ, Bessonov, V, Damm, E, Dethloff, K, Haapala, J, Haas, C, Harris, C, Hendricks, S, Hoelemann, J, Hoppmann, M, Kaleschke, L, Karcher, M, Kolabutin, N, Lei, R, Lenz, J, Morgenstern, A, Nicolaus, M, Nixdorf, U, Petrovsky, T, Rabe, B, Rabenstein, L, Rex, M, Ricker, R, Rohde, J, Shimanchuk, E, Singha, S, Smolyanitsky, V, Sokolov, V, Stanton, T, Timofeeva, A, Tsamados, M, Watkins, D. 2020. The MOSAiC ice floe: Sediment-laden survivor from the Siberian shelf. The Cryosphere 14(7): 2173-2187. DOI: http://dx.doi.org/10.5194/tc-14-2173-2020.
Kudryavtsev, VN, Soloviev, AV. 1990. Slippery near-surface layer of the ocean arising due to daytime solar heating. Journal of Physical Oceanography 20(5): 617-628. DOI: http://dx.doi.org/10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.
Kurosaki, Y, Matoba, S, Iizuka, Y, Fujita, K, Shimada, R. 2022. Increased oceanic dimethyl sulfide emissions in areas of sea ice retreat inferred from a Greenland ice core. Communications Earth & Environment 3(1): 327. DOI: http://dx.doi.org/10.1038/s43247-022-00661-w.
Kwok, R, Cunningham, GF. 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2045). DOI: http://dx.doi.org/10.1098/rsta.2014.0157.
Lamarche-Gagnon, G, Wadham, JL, Sherwood Lollar, B, Arndt, S, Fietzek, P, Beaton, AD, Tedstone, AJ, Telling, J, Bagshaw, EA, Hawkings, JR, Kohler, TJ. 2019. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565(7737): 73-77. DOI: http://dx.doi.org/10.1038/s41586-018-0800-0.
Landy, J, Ehn, J, Shields, M, Barber, D. 2014. Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans 119(5): 3054-3075. DOI: http://dx.doi.org/10.1002/2013JC009617.
Langdon, C. 2010. Determination of dissolved oxygen in seawater by winkler titration using amperometric technique, in Hood, EM, Sabine, CL, Sloyan, BM eds., The GO-SHIP repeat hydrography manual: A collection of expert reports and guidelines. Version 1. (IOCCP Report Number 14; ICPO Publication Series Number 134): 18. DOI: http://dx.doi.org/10.25607/OBP-1350.
Lange, BA, Granskog, MA, Meyer, H, Bauch, D, Smith, MM, von Albedyll, L, Raphael, I, Matero, I, Salganik, E. 2022. Oxygen and hydrogen isotopic ratios from sea ice bottom, false bottom ice, under-ice meltwater layer and surface melt pond samples collected during MOSAiC leg 4 (PS122.4). PANGAEA[data set]. DOI: http://dx.doi.org/pangaea.de/10.1594/PANGAEA.943734.
Lange, BA, Salganik, E, Macfarlane, A, Schneebeli, M, Høyland, K, Gardner, J, Müller, O, Divine, DV, Kohlbach, D, Katlein, C, Granskog, MA. 2023. Snowmelt contribution to Arctic first-year ice ridge mass balance and rapid consolidation during summer melt. Elementa: Science of the Anthropocene 11(1): 00037. DOI: http://dx.doi.org/10.1525/elementa.2022.00037.
Langleben, MP. 1966. On the factors affecting the rate of ablation of sea ice. Canadian Journal of Earth Sciences 3(4): 431-439. DOI: http://dx.doi.org/10.1139/e66-032.
Lannuzel, D, Tedesco, L, Van Leeuwe, M, Campbell, K, Flores, H, Delille, B, Miller, L, Stefels, J, Assmy, P, Bowman, J, Brown, K. 2020. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nature Climate Change 10(11): 983-992. DOI: http://dx.doi.org/10.1038/s41558-020-00940-4.
Lauvset, SK, Lange, N, Tanhua, T, Bittig, HC, Olsen, A, Kozyr, A, Alin, S, Álvarez, M, Azetsu-Scott, K, Barbero, L, Becker, S, Brown, PJ, Carter, BR, Cotrim da Cunha, L, Feely, RA, Hoppema, M, Humphreys, MP, Ishii, M, Jeansson, E, Jiang, LQ, Jones, SD, Lo Monaco, C, Murata, A, Müller, JD, Pérez, FF, Pfeil, B, Schirnick, C, Steinfeldt, R, Suzuki, T, Tilbrook, B, Ulfsbo, A, Velo, A,Woosley, RJ, Key, RM. 2022. GLODAPv2.2022: The latest version of the global interior ocean biogeochemical data product. Earth System Science Data 14: 5543-5572. DOI: http://dx.doi.org/10.5194/essd-14-5543-2022.
Leck, C, Bigg, EK. 2005. Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B: Chemical and Physical Meteorology 57: 305-316. DOI: http://dx.doi.org/10.3402/tellusb.v57i4.16546.
Lei, R, Cheng, B, Hoppmann, M, Zhang, F, Zuo, G, Hutchings, JK, Lin, L, Lan, M,Wang, H, Regnery, J, Krumpen, T. 2022. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019-2020. Elementa: Science of the Anthropocene 10(1): 000089. DOI: http://dx.doi.org/10.1525/elementa.2021.000089.
Levasseur, M. 2013. Impact of Arctic meltdown on the microbial cycling of sulphur. Nature Geoscience 6: 691-700. DOI: http://dx.doi.org/10.1038/ngeo1910.
Lewis, KM, Arntsen, AE, Coupel, P, Joy-Warren, H, Lowry, KE, Matsuoka, A, Mills, MM, van Dijken, GL, Selz, V, Arrigo, KR. 2019. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnology and Oceanography 64: 284-301. DOI: http://dx.doi.org/10.1002/lno.11039.
Lizotte, M, Levasseur, M, Galindo, V, Gourdal, M, Gosselin, M, Tremblay, JÉ, Blais, M, Charrette, J, Hussherr, R. 2020. Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges. Biogeosciences 17(6): 1557-1581. DOI: http://dx.doi.org/10.5194/bg-17-1557-2020.
Loose, B, McGillis, WR, Schlosser, P, Perovich, D, Takahashi, T. 2009. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophysical Research Letters 36(5): L05603. DOI: http://dx.doi.org/10.1029/2008GL036318.
Loose, B, Schlosser, P. 2011. Sea ice and its effect on CO2flux between the atmosphere and the Southern Ocean interior. Journal of Geophysical Research 116: C11019. DOI: http://dx.doi.org/10.1029/2010JC006509.
Löscher, CR, Kock, A, Könneke, M, LaRoche, J, Bange, HW, Schmitz, RA. 2012. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9(7): 2419-2429. DOI: http://dx.doi.org/10.5194/bg-9-2419-2012.
Malfatti, F, Lee, C, Tinta, T, Pendergraft, MA, Celussi, M, Zhou, Y, Sultana, CM, Rotter, A, Axson, JL, Collins, DB, Santander, MV. 2019. Detection of active microbial enzymes in nascent sea spray aerosol: Implications for atmospheric chemistry and climate. Environmental Science & Technology Letters 6(3): 171-177. DOI: http://dx.doi.org/10.1021/acs.estlett.8b00699.
Manning, CC, Preston, VL, Jones, SF, Michel, AP, Nicholson, DP, Duke, PJ, Ahmed, MM, Manganini, K, Else, BG, Tortell, PD. 2020. River inflow dominates methane emissions in an Arctic coastal system. Geophysical Research Letters 47(10): e2020GL087669. DOI: http://dx.doi.org/10.1029/2020GL087669.
Manning, CC, Zheng, Z, Fenwick, L, McCulloch, RD, Damm, E, Izett, RW,Williams,WJ, Zimmermann, S,Vagle, S, Tortell, PD. 2022. Interannual variability in methane and nitrous oxide concentrations and sea-air fluxes across the North American Arctic Ocean (2015-2019). Global Biogeochemical Cycles 36(4): e2021GB007185. DOI: http://dx.doi.org/10.1029/2021GB007185.
Marchenko, A. 2022. Modeling of thermodynamic consolidation of sea ice ridges drifting in the water with changing temperature. Journal of Marine Science and Engineering 10(12): 1858. DOI: http://dx.doi.org/10.3390/jmse10121858.
Martin, S, Kauffman, P. 1974. The evolution of under-ice melt ponds, or double diffusion at the freezing point. Journal of Fluid Mechanics 64(3): 507-528. DOI: http://dx.doi.org/10.1017/S0022112074002527.
Martin, T, Steele, M, Zhang, J. 2014. Seasonality and long-term trend of Arctic Ocean surface stress in a model. Journal of Geophysical Research 119(3): 1723-1738. DOI: http://dx.doi.org/10.1002/2013JC009425.
Matrai, PA, Tranvik, L, Leck, C, Knulst, JC. 2008. Are high Arctic surface microlayers a potential source of aerosol organic precursors? Marine Chemistry 108(1-2): 109-122. DOI: http://dx.doi.org/10.1016/j.marchem.2007.11.001.
Matthes, LC, Mundy, CJ, Girard, SL, Babin, M, Verin, G, Ehn, JK. 2020. Spatial heterogeneity as a key variable influencing spring-summer progression in UVR and PAR transmission through Arctic sea ice. Frontiers in Marine Science 7(183): 1-15. DOI: http://dx.doi.org/10.3389/fmars.2020.00183.
Mau, S, Blees, J, Helmke, E, Niemann, H, Damm, E. 2013. Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway). Biogeosciences 10(10): 6267-6268. DOI: http://dx.doi.org/10.5194/bg-10-6267-2013.
McDougall, TJ, Barker, PM. 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO Working Group 127: 1-28.
McDougall, TJ, Jackett, DR, Millero, FJ, Pawlowicz, R, Barker, PM. 2012. A global algorithm for estimating absolute salinity. Ocean Science 8(6): 1123-1134. DOI: http://dx.doi.org/10.5194/os-8-1123-2012.
McLaren, IA. 2011. Primary production and nutrients in Ogac Lake, a landlocked fiord on Baffin Island. Journal of the Fisheries Research Board of Canada 26(6): 1561-1576. DOI: http://dx.doi.org/10.1139/f69-140.
McParland, EL, Levine, NM. 2019. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnology and Oceanography 64(2): 757-773. DOI: http://dx.doi.org/10.1002/lno.11076.
McPhee, MG, Kantha, LH. 1989. Generation of internal waves by sea ice. Journal of Geophysical Research 94(C3): 3287-3302. DOI: http://dx.doi.org/10.1029/JC094iC03p03287.
McPhee, MG, Maykut, GA, Morison, JH. 1987. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. Journal of Geophysical Research 92(C7): 7017-7031. DOI: http://dx.doi.org/10.1029/JC092iC07p07017.
Miao, X, Xie, H, Ackley, SF, Perovich, DK, Ke, C. 2015. Object-based detection of Arctic sea ice and melt ponds using high resolutionaerial photographs. Cold Regions Science and Technology 119: 211-222. DOI: http://dx.doi.org/10.1016/j.coldregions.2015.06.014.
Michel, C, Legendre, L, Taguchi, S. 1997. Coexistence of microalgal sedimentation and water column recycling in a seasonally ice-covered ecosystem (Saroma-ko Lagoon, Sea of Okhotsk, Japan). Journal of Marine Systems 11(1-2): 133-148. DOI: http://dx.doi.org/10.1016/S0924-7963(96)00034-6.
Miller, LA, Burgers, TM, Burt,WJ, Granskog, MA, Papakyriakou, TN. 2019. Air-sea CO2 flux estimates in stratified Arctic coastal waters: How wrong can we be? Geophysical Research Letters 46(1): 235-243. DOI: http://dx.doi.org/10.1029/2018GL080099.
Mo, A, Yang, EJ, Kang, S-H, Kim, D, Lee, K, Ko, YH, Kim, K, Kim, T-W. 2022. Impact of sea ice melting on summer air-sea CO2 exchange in the east Siberian Sea. Frontiers in Marine Science 9: 766810. DOI: http://dx.doi.org/10.3389/fmars.2022.766810.
Mock, T, Boulton,W, Balmonte, JP, Barry, K, Bertilsson, S, Bowman, J, Buck, M, Bratbak, G, Chamberlain, EJ, Cunliffe, M, Creamean, J. 2022. Multiomics in the central Arctic Ocean for benchmarking biodiversity change. PLoS Biology 20(10): e3001835. DOI: http://dx.doi.org/10.1371/journal.pbio.3001835.
Mock, T, Otillar, RP, Strauss, J, McMullan, M, Paajanen, P, Schmutz, J, Salamov, A, Sanges, R, Toseland, A, Ward, BJ, Allen, AE. 2017. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541: 536-540. DOI: http://dx.doi.org/10.1038/nature20803.
Morison, JH, Long, CE, Levine, MD. 1985. Internal wave dissipation under sea ice. Journal of Geophysical Research 90(C6): 11959-11966. DOI: http://dx.doi.org/10.1029/JC090iC06p11959.
Muilwijk, M, Koenig, Z, Fer, I, Schulz, K, Tippenhauer, S, Schuffenhauer, I, Karam, S, Hoppmann, M, Allerholt, J. 2022. Videos and extracted frames from Blueye ROV camera during MOSAiC Leg 4 (PS122/4) and Leg 5 (PS122/5). PANGAEA [data set]. DOI: http://dx.doi.org/10.1594/PANGAEA.941553.
Mundy, CJ, Gosselin, M, Ehn, JK, Belzile, C, Poulin, M, Alou, E, Roy, S, Hop, H, Lessard, S, Papakyriakou, TN, Barber, DG. 2011. Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biology 34: 1869-1886. DOI: http://dx.doi.org/10.1007/s00300-011-0998-x.
Nansen, F. 1902. The oceanography of the North Polar Basin, in Nansen, F ed., The Norwegian North polar expedition 1893-1896 scientific results (vol. 3). New York, NY: Greenwood Press.
Nansen, F. 1906. Protozoa on the ice-floes of the North Polar Sea, in Nansen, F ed., The Norwegian North polar expedition 1893-1896 scientific results (vol. 5). New York, NY: Greenwood Press.
Nazintsev, YL. 1964. The heat balance of the surface of the multiyear ice cover in the central Arctic (in Russian). Trudy Arkticheskogo i Antarkticheskogo Nauchno-Issledovatel’skogo Instituta 267: 110-126.
Neckel, N, Fuchs, N, Birnbaum, G, Hutter, N, Jutila, A, Buth, L, von Albedyll, L, Ricker, R, Haas, C. 2022. Helicopter-borne RGB orthomosaics and photogrammetric digital elevation models from the MOSAiC expedition. PANGAEA [data set]. DOI: http://dx.doi.org/10.1594/PANGAEA.949433.
Nicolaus, M, Katlein, C, Maslanik, J, Hendricks, S. 2012. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophysical Research Letters 39(24). DOI: http://dx.doi.org/10.1029/2012GL053738.
Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, Albedyll, LV, Angelopoulos, M, Anhaus, P, Arndt, S, Belter, HJ, Bessonov,V, Birnbaum, G, Brauchle, J, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Dethloff, K, Divine, DV, Fong, AA, Fons, S, Frey, MM, Fuchs, N, Gabarró, C, Gerland, S, Goessling, HF, Gradinger, R, Haapala, J, Haas, C, Hamilton, J, Hannula, H-R, Hendricks, S, Herber, A, Heuzé, C, Hoppmann, M, Høyland, KV, Huntemann, M, Hutchings, JK, Hwang, B, Itkin, P, Jacobi, H-W, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, GE, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan, V, Niubom, A, Oggier, M, Oppelt, N, Pätzold, F, Perron, C, Petrovsky, T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky, V, Sokolov, V, Stanton, T, Stroeve, J, Thielke, L, Timofeeva, A, Tonboe, RT, Tavri, A, Tsamados, M,Wagner, DN,Watkins, D,Webster, M, Wendisch, M. 2022. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene 10(1): 000046. DOI: http://dx.doi.org/10.1525/elementa.2021.000046.
Nixdorf, U, Dethloff, K, Rex, M, Shupe, M, Sommerfeld, A, Perovich, DK, Nicolaus, M, Heuzé, C, Rabe, B, Loose, B, Damm, E, Gradinger, R, Fong, A, Maslowski, W, Rinke, A, Kwok, R, Spreen, G, Wendisch, M, Herber, A, Hirsekorn, M, Mohaupt, Ve, Frickenhaus, S, Immerz, A, Weiss-Tuider, K, König, B, Mengedoht, D, Regnery, J, Gerchow, P, Ransby, D, Krumpen, T, Morgenstern, A, Haas, C, Kanzow, T, Rack, FR, Saitzev, V, Sokolov, V, Makarov, A, Schwarze, S, Wunderlich, T, Wurr, K, Boetius, A. 2021. MOSAiC extended acknowledgement. Zenodo. DOI: http://dx.doi.org/10.5281/zenodo.5541624.
Nomura, D, Granskog, MA, Assmy, P, Simizu, D, Hashida, G. 2013. Arctic and Antarctic sea ice acts as a sink for atmospheric CO2 during periods of snowmelt and surface flooding. Journal of Geophysical Research 118(12): 6511-6524. DOI: http://dx.doi.org/10.1002/2013JC009048.
Nomura, D, Kawaguchi, Y,Webb, A, Li, Y, Dall’osto, M, Schmidt, K, Droste, ES, Chamberlain, EJ, Kolabutin, N, Shimanchuk, E, Hoppmann, M, Gallagher, MR, Meyer, H, Ardakani, MM, Bauch, D, Gabarró, C, Smith, MM, Inoue, J, Damm, E, Delille, B. 2023. Meltwater layer dynamics in a central Arctic lead: Effects of width, re-freezing, and mixing during late summer. Elementa: Science of the Anthropocene 11(1): 00102. DOI: http://dx.doi.org/10.1525/elementa.2022.00102.
Notz, D, McPhee, MG, Worster, MG, Maykut, GA, Schlünzen, KH, Eicken, H. 2003. Impact of underwater-ice evolution on Arctic summer sea ice. Journal of Geophysical Research 108(C7): 3223. DOI: http://dx.doi.org/10.1029/2001JC001173.
Olsen, LM, Laney, SR, Duarte, P, Kauko, HM, Fernández-Méndez, M, Mundy, CJ, Rösel, A, Meyer, A, Itkin, P, Cohen, L, Peeken, I, Tatarek, A, Róźańska-Pluta, M, Wiktor, J, Taskjelle, T, Pavlov, AK, Hudson, SR, Granskog, MA, Hop, H, Assmy, P. 2017. The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis. Journal of Geophysical Research Biogeosciences 122: 1529-1548. DOI: http://dx.doi.org/10.1002/2016JG003668.
Ouyang, Z, Qi, D, Zhong,W, Chen, L, Gao, Z, Lin, H, Sun, H, Li, T, Cai, WJ. 2021. Summertime evolution of net community production and CO2 flux in the western Arctic Ocean. Global Biogeochemical Cycles 35(3): e2020GB006651. DOI: http://dx.doi.org/10.1029/2020GB006651.
Park, K, Kim, I, Choi, JO, Lee, Y, Jung, J, Ha, SY, Kim, JH, Zhang, M. 2019. Unexpectedly high dimethyl sulfide concentration in high-latitude Arctic sea ice melt ponds. Environmental Science: Processes & Impacts 21(10): 1642-1649. DOI: http://dx.doi.org/10.1039/c9em00195f.
Parmentier, FJW, Christensen, TR, Sørensen, LL, Rysgaard, S, McGuire, AD, Miller, PA, Walker, DA. 2013. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Climate Change 3(3): 195-202. DOI: http://dx.doi.org/10.1038/nclimate1784.
Pavlov, AK, Taskjelle, T, Kauko, HM, Hamre, B, Hudson, SR, Assmy, P, Duarte, P, Fernández-Méndez, M, Mundy, CJ, Granskog, MA. 2017. Altered inherent optical properties and estimates of the underwater light field during an Arctic under-ice bloom of Phaeocystis pouchetii. Journal of Geophysical Research Oceans 122(6): 4939-4961. DOI: http://dx.doi.org/10.1002/2016JC012471.
Pegau, WS. 2002. Inherent optical properties of the central Arctic surface waters. Journal of Geophysical Research 107(C10): SHE 16-1-SHE 16-7. DOI: http://dx.doi.org/10.1029/2000JC000382.
Peralta-Ferriz, C, Woodgate, RA. 2015. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Progress in Oceanography 134: 19-53. DOI: http://dx.doi.org/10.1016/j.pocean.2014.12.005.
Perovich, D, Smith, M, Light, B,Webster, M. 2021. Meltwater sources and sinks for multiyear Arctic sea ice in summer. The Cryosphere 15(9): 4517-4525. DOI: http://dx.doi.org/10.5194/tc-15-4517-2021.
Perovich, DK, Grenfell, TC, Richter-Menge, JA, Light, B, Tucker III, WB, Eicken, H. 2003. Thin and thinner: Sea ice mass balance measurements during SHEBA. Journal of Geophysical Research 108: 8050. DOI: http://dx.doi.org/10.1029/2001JC001079.
Perovich, DK, Maykut, GA. 1990. Solar heating of a stratified ocean in the presence of a static ice cover. Journal of Geophysical Research 95(C10): 18233-18245. DOI: http://dx.doi.org/10.1029/JC095iC10p18233.
Petrich, C, Eicken, C, Polashenski, CM, Sturm, M, Harbeck, JP, Perovich, DK, Finnegan, DC. 2012. Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice. Journal of Geophysical Research 117: C09029. DOI: http://dx.doi.org/10.1029/2012JC008192.
Petrou, K, Doblin, MA, Ralph, PJ. 2011. Heterogeneity in the photoprotective capacity of three Antarctic diatoms during short-term changes in salinity and temperature. Marine Biology 158: 1029-1041. DOI: http://dx.doi.org/10.1007/s00227-011-1628-4.
Pierrot, D, Neill, C, Sullivan, K, Castle, R,Wanninkhof, R, Lüger, H, Johannessen, T, Olsen, A, Feeley, RA, Cosca, CE. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Research Part II: Topical Studies in Oceanography 56(8-10): 512-522. DOI: http://dx.doi.org/10.1016/j.dsr2.2008.12.005.
Polashenski, C, Golden, KM, Perovich, DK, Skyllingstad, E, Arnsten, A, Stwertka, C, Wright, N. 2017. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice. Journal of Geophysical Research 122: 413-440. DOI: http://dx.doi.org/10.1002/2016JC011994.
Polashenski, C, Perovich, DK, Courville, Z. 2012. The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research 117: C01001. DOI: http://dx.doi.org/10.1029/2011JC007231.
Polashenski, C, Perovich, DK, Frey, KE, Cooper, LW, Logvinova, CI, Dadic, R, Light, B, Kelly, HP, Trusel, LD,Webster, M. 2015. Physical and morphological properties of sea ice in the Chukchi and Beaufort Seas during the 2010 and 2011 NASA ICESCAPE missions. Deep Sea Research Part II: Topical Studies in Oceanography 118(Part A): 7-17. DOI: http://dx.doi.org/10.1016/j.dsr2.2015.04.006.
Prinsenberg, SJ, Peterson, IK, Holladay, JS. 2008. Measuring the thicknesses of the freshwater-layer plume and sea ice in the land-fast ice region of the Mackenzie Delta using helicopter-borne sensors. Journal of Marine Systems 74(3-4): 783-793. DOI: http://dx.doi.org/10.1016/j.jmarsys.2008.02.009.
Provost, C, Sennéchael, N, Sirven, J. 2019. Contrasted summer processes in the sea ice for two neighboring floes north of 84_N: Surface and basal melt and false bottom formation. Journal of Geophysical Research 124(6): 3963-3986. DOI: http://dx.doi.org/10.1029/2019JC015000.
Quinn, PK, Collins, DB, Grassian, VH, Prather, KA, Bates, TS. 2015. Chemistry and related properties of freshly emitted sea spray aerosol. Chemical Reviews 115(10): 4383-4399. DOI: http://dx.doi.org/10.1021/cr500713g.
Rabe, B, Heuzé, C, Regnery, J, Aksenov, Y, Allerholt, J, Athanase, M, Bai, Y, Basque, C, Bauch, D, Baumann, TM, Chen, D, Cole, ST, Craw, L, Davies, A, Damm, E, Dethloff, K, Divine, DV, Doglioni, F, Ebert, F, Fang, Y-C, Fer, I, Fong, AA, Gradinger, R, Granskog, MA, Graupner, R, Haas, C, He, H, He,Y, Hoppmann, M, Janout, M, Kadko, D, Kanzow, T, Karam, S, Kawaguchi, Y, Koenig, Z, Kong, B, Krishfield, RA, Krumpen, T, Kuhlmey, D, Kuznetsov, I, Lan, M, Laukert, G, Lei, R, Li, T, Torres-Valdés, S, Lin, L, Lin, L, Liu, H, Liu, N, Loose, B, Ma, X, MacKay, R, Mallet, M, Mallett, RDC, Maslowski, W, Mertens, C, Mohrholz, V, Muilwijk, M, Nicolaus, M, O’Brien, JK, Perovich, D, Ren, J, Rex, M, Ribeiro, N, Rinke, A, Schaffer, J, Schuffenhauer, I, Schulz, K, Shupe, MD, Shaw,W, Sokolov, V, Sommerfeld, A, Spreen, G, Stanton, T, Stephens, M, Su, J, Sukhikh, N, Sundfjord, A, Thomisch, K, Tippenhauer, S, Toole, JM, Vredenborg, M, Walter, M, Wang, H, Wang, L, Wang, Y, Wendisch, M, Zhao, J, Zhou, M, Zhu, J. 2022. Overview of the MOSAiC expedition: Physical oceanography. Elementa: Science of the Anthropocene 10(1): 00062. DOI: http://dx.doi.org/10.1525/elementa.2021.00062.
Ralph, PJ, McMinn, A, Ryan, KG, Ashworth, C. 2005. Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. Journal of Phycology 41(4): 763-769. DOI: http://dx.doi.org/10.1111/j.1529-8817.2005.00106.x.
Ralph, PJ, Ryan, KG, Martin, A, Fenton, G. 2007. Melting out of sea ice causes greater photosynthetic stress in algae than freezing in. Journal of Phycology 43(5): 948-956. DOI: http://dx.doi.org/10.1111/j.1529-8817.2007.00382.x.
Rampal, P,Weiss, J, Dubois, C, Campin, JM. 2011. IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research 116(C8). DOI: http://dx.doi.org/10.1029/2011JC007110.
Randelhoff, A, Fer, I, Sundfjord, A. 2017. Turbulent upper-ocean mixing affected by meltwater layers during Arctic summer. Journal of Physical Oceanography 474: 835-853. DOI: http://dx.doi.org/10.1175/JPO-D-16-0200.1.
Randelhoff, A, Sundfjord, A, Renner, AH. 2014. Effects of a shallow pycnocline and surface meltwater on sea ice-ocean drag and turbulent heat flux. Journal of Physical Oceanography 448: 2176-2190. DOI: http://dx.doi.org/10.1175/JPO-D-13-0231.1.
Rapp, JZ, Sullivan, MB, Deming, JW. 2021. Divergent genomic adaptations in the microbiomes of Arctic subzero sea-ice and cryopeg brines. Frontiers in Microbiology 12: 701186. DOI: http://dx.doi.org/10.3389/fmicb.2021.701186.
Rees, AP, Bange, HW, Arévalo-Martínez, DL, Artioli, Y, Ashby, DM, Brown, I, Campen, HI, Clark, DR, Kitidis, V, Lessin, G, Tarran, GA, Turley, C. 2022. Nitrous oxide and methane in a changing Arctic Ocean. Ambio 51: 398-410. DOI: http://dx.doi.org/10.1007/s13280-021-01633-8.
Rees, AP, Brown, IJ, Jayakumar, A, Lessin, G, Somerfield, PJ, Ward, BB. 2021. Biological nitrous oxide consumption in oxygenated waters of the high latitude Atlantic Ocean. Communications Earth & Environment 2: 36. DOI: http://dx.doi.org/10.1038/s43247-021-00104-y.
Richter, DH, Veron, F. 2016. Ocean spray: An outsized influence on weather and climate. Physics Today 69(11): 34-39. DOI: http://dx.doi.org/10.1063/PT.3.3363.
Richter-Menge, JA, Perovich, DK, Pegau, WS. 2001. Summer ice dynamics during SHEBA and its effect on the ocean heat content. Annals of Glaciology 33: 201-206. DOI: http://dx.doi.org/10.3189/172756401781818176.
Riebesell, U, Schloss, I, Smetacek, V. 1991. Aggregation of algae released from melting sea ice: Implications for seeding and sedimentation. Polar Biology 11: 239-248. DOI: http://dx.doi.org/10.1007/BF00238457.
Rinke, A, Cassano, JJ, Cassano, EN, Jaiser, R, Handorf, D. 2021. Meteorological conditions during the MOSAiC expedition: Normal or anomalous? Elementa: Science of the Anthropocene 9(1): 00023. DOI: http://dx.doi.org/10.1525/elementa.2021.00023.
Rösel, A, Kaleschke, L. 2012. Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data. Journal of Geophysical Research: Oceans 117(C5). DOI: http://dx.doi.org/10.1029/2011JC007869.
Rudels, B. 2012. Arctic Ocean circulation and variability-advection and external forcing encounter constraints and local processes. Ocean Science 8(2): 261-286. DOI: http://dx.doi.org/10.5194/os-8-261-2012.
Rudels, B. 2016. Arctic Ocean stability: The effects of local cooling, oceanic heat transport, freshwater input, and sea ice melt with special emphasis on the Nansen Basin. Journal of Geophysical Research 121(7): 4450-4473. DOI: http://dx.doi.org/10.1002/2015JC011045.
Ryan, KG, Ralph, P, McMinn, A. 2004. Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting. Polar Biology 27: 679-686. DOI: http://dx.doi.org/10.1007/s00300-004-0636-y.
Rysgaard, S, Bendtsen, J, Delille, B, Dieckmann, GS, Glud, RN, Kennedy, H, Mortensen, J, Papadimitriou, S, Thomas, DN, Tison, J-L. 2011. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus B: Chemical and Physical Meteorology 63(5): 823-830. DOI: http://dx.doi.org/10.1111/j.1600-0889.2011.00571.x.
Rysgaard, S, Glud, RN. 2004. Anaerobic N2 production in Arctic sea ice. Limnology and Oceanography 49(1): 86-94. DOI: http://dx.doi.org/10.4319/lo.2004.49.1.0086.
Salganik, E, Katlein, C, Lange, BA, Matero, I, Lei, R, Fong, AA, Fons, SW, Divine, D, Oggier, M, Castellani, G, Bozzato, D, Chamberlain, EJ, Hoppe, CJM, Müller, O, Gardner, J, Rinke, A, Pereira, PS, Ulfsbo, A, Marsay, C, Webster, MA, Maus, S, Høyland, KV, Granskog, MA. 2023. Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance. Elementa: Science of the Anthropocene 11(1): 00035. DOI: http://dx.doi.org/10.1525/elementa.2022.00035.
Schmale, J, Baccarini, A. 2021. Progress in unraveling atmospheric new particle formation and growth across the Arctic. Geophysical Research Letters 48(14): e2021GL094198. DOI: http://dx.doi.org/10.1029/2021GL094198.
Schulz, K, Mohrholz, V, Fer, I, Janout, M, Hoppmann, M, Schaffer, J, Koenig, Z. 2022. A full year of turbulence measurements from a drift campaign in the Arctic Ocean 2019-2020. Scientific Data 9: 472. DOI: http://dx.doi.org/10.1038/s41597-022-01574-1.
Sherr, BF, Sherr, EB. 2003. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 50(4): 529-542. DOI: http://dx.doi.org/10.1016/S0967-0637(03)00030-X.
Shupe, MD, Rex, M, Blomquist, B, Persson, POG, Schmale, J, Uttal, T, Althausen, D, Angot, H, Archer, S, Bariteau, L, Beck, I, Bilberry, J, Bucci, S, Buck, C, Boyer, M, Brasseur, Z, Brooks, IM, Calmer, R, Cassano, J, Castro, V, Chu, D, Costa, D, Cox, CJ, Creamean, J, Crewell, S, Dahlke, S, Damm, E, de Boer, G, Deckelmann, H, Dethloff, K, Dütsch, M, Ebell, K, Ehrlich, A, Ellis, J, Engelmann, R, Fong, AA, Frey, MM, Gallagher, MR, Ganzeveld, L, Gradinger, R, Graeser, J, Greenamyer, V, Griesche, H, Griffiths, S, Hamilton, J, Heinemann, G, Helmig, D, Herber, A, Heuzé, C, Hofer, J, Houchens, T, Howard, D, Inoue, J, Jacobi, H-W, Jaiser, R, Jokinen, T, Jourdan, O, Jozef, G, King, W, Kirchgaessner, A, Klingebiel, M, Krassovski, M, Krumpen, T, Lampert, A, Landing, W, Laurila, T, Lawrence, D, Lonardi, M, Loose, B, Lüpkes, C, Maahn, M, Macke, A, Maslowski, W, Marsay, C, Maturilli, M, Mech, M, Morris, S, Moser, M, Nicolaus, M, Ortega, P, Osborn, J, Pätzold, F, Perovich, DK, Petäjä, T, Pilz, C, Pirazzini, R, Posman, K, Powers, H, Pratt, KA, Preußer, A, Quéléver, L, Radenz, M, Rabe, B, Rinke, A, Sachs, T, Schulz, A, Siebert, H, Silva, T, Solomon, A, Sommerfeld, A, Spreen, G, Stephens, M, Stohl, A, Svensson, G, Uin, J, Viegas, J, Voigt, C, von der Gathen, P,Wehner, B,Welker, JM, Wendisch, M, Werner, M, Xie, ZQ, Yue, F. 2022. Overview of the MOSAiC expedition: Atmosphere. Elementa: Science of the Anthropocene 10(1): 00060. DOI: http://dx.doi.org/10.1525/elementa.2021.00060.
Sigman, DM, Jaccard, SL, Haug, GH. 2004. Polar ocean stratification in a cold climate. Nature 428: 59-63. DOI: http://dx.doi.org/10.1038/nature02357.
Silyakova, A, Nomura, D, Kotovitch, M, Fransson, A, Delille, B, Chierici, M, Granskog, MA. 2022. Methane release from open leads and new ice following an Arctic winter storm event. Polar Science 33: 100874. DOI: http://dx.doi.org/10.1016/j.polar.2022.100874.
Simó, R. 2001. Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends in Ecology and Evolution 16(6): 287-294. DOI: http://dx.doi.org/10.1016/S0169-5347(01)02152-8.
Skyllingstad, ED, Paulson, CA, Pegau, WS. 2005. Simulation of turbulent exchange processes in summertime leads. Journal of Geophysical Research 110(C5). DOI: http://dx.doi.org/10.1029/2004JC002502.
Smith, M, Bozzato, D, Chamberlain, E, Dietrich, U, Droste, E, Fong, A, Light, B, Linhardt, F, Matero, I, Perovich, D, Raphael, I, Regnery, J, Salganik, E, Tavri, A, von Albedyll, L,Webster, M. 2022a. Nearsurface ocean temperature and salinity measurements (using YSI and Castaway) during the summer component of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign in the Central Arctic Ocean, July-September 2020. Arctic Data Center. DOI: http://dx.doi.org/10.18739/A2TT4FV1G.
Smith, MM, Holland, M, Light, B. 2022c. Arctic sea ice sensitivity to lateral melting representation in a coupled climate model. The Cryosphere 16(2): 419-434. DOI: http://dx.doi.org/10.5194/tc-16-419-2022.
Smith, MM, von Albedyll, L, Raphael, IA, Lange, BA, Matero, I, Salganik, E, Webster, MA, Granskog, MA, Fong, A, Lei, R, Light, B. 2022b. Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations. Elementa: Science of the Anthropocene 10(1): 000116. DOI: http://dx.doi.org/10.1525/elementa.2021.000116.
Smith, MS, Zimmerman, K. 1981. Nitrous oxide production by nondenitrifying soil nitrate reducers. Soil Science Society of America Journal 45(5): 865-871. DOI: http://dx.doi.org/10.2136/sssaj1981.03615995004500050008x.
Smith, N. 2019. Mathematical modelling of under-ice melt ponds and their impact on the thermohaline interaction between sea ice and the oceanic mixed layer [PhD thesis]. Reading: University of Reading. DOI: http://dx.doi.org/10.48683/1926.00085363.
Sørensen, HL, Thamdrup, B, Jeppesen, E, Rysgaard, S, Glud, RN. 2017. Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biology 40: 1593-1606. DOI: http://dx.doi.org/10.1007/s00300-017-2082-7.
Stefels, J, van Leeuwe, M, Jones, E, Meredith, M, Venables, H,Webb, A, Henley, S. 2018. Impact of seaice melt on dimethyl sulfide (sulfoniopropionate)inventories in surface waters of Marguerite Bay,West Antarctic Peninsula. Philosophical Transactions of the Royal Society A 376: 20170169. DOI: http://dx.doi.org/10.1098/rsta.2017.0169.
Stopa, JE, Ardhuin, F, Girard-Ardhuin, F. 2016. Wave climate in the Arctic 1992-2014: Seasonality and trends. The Cryosphere 10(4): 1605-1629. DOI: http://dx.doi.org/10.5194/tc-10-1605-2016.
Taskjelle, T, Granskog, MA, Pavlov, AK, Hudson, SR, Hamre, B. 2017. Effects of an Arctic under-ice bloom on solar radiant heating of the water column. Journal of Geophysical Research: Oceans 122(1): 126-138. DOI: http://dx.doi.org/10.1002/2016JC012187.
Thielke, L, Fuchs, N, Spreen, G, Tremblay, B, Birnbaum, G, Huntemann, M, Hutter, N, Itkin, P, Jutila, A, Webster, MA. 2022. Preconditioning of summer melt ponds from winter sea ice surface temperature. Geophysical Research Letters 50(4): e2022GL101493. DOI: http://dx.doi.org/10.1029/2022GL101493.
Thornton, DCO. 2014. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49(1): 20-46. DOI: http://dx.doi.org/10.1080/09670262.2013.875596.
Timmermans, ML, Krishfield, R, Laney, S, Toole, J. 2010. Ice-tethered profiler measurements of dissolved oxygen under permanent ice cover in the Arctic Ocean. Journal of Atmospheric and Oceanic Technology 27(11): 1936-1949. DOI: http://dx.doi.org/10.1175/2010JTECHO772.1.
Timmermans, ML, Winsor, P. 2013. Scales of horizontal density structure in the Chukchi Sea surface layer. Continental Shelf Research 52: 39-45. DOI: http://dx.doi.org/10.1016/j.csr.2012.10.015.
Toole, JM, Krishfield, RA, Timmermans, M-L, Proshutinsky, A. 2011. The ice-tethered profiler: Argo of the Arctic. Oceanography 24(3): 126-135. DOI: http://dx.doi.org/10.2307/24861307.
Top, Z, Martin, S, Becker, P. 1985. On the dissolved surface oxygen supersaturation in the Arctic. Geophysical Research Letters 12(12): 821-823. DOI: http://dx.doi.org/10.1029/GL012i012p00821.
Tremblay, C, Runge, J, Legendre, L. 1989. Grazing and sedimentation of ice algae during and immediately after a bloom at the ice-water interface. Marine Ecology Progress Series 56(3): 291-300. DOI: http://dx.doi.org/10.3354/meps056291.
Trevena, AJ, Jones, GB. 2006. Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Marine Chemistry 98(2-4): 210-222. DOI: http://dx.doi.org/10.1016/j.marchem.2005.09.005.
Tsamados, M, Feltham, D, Petty, A, Schroeder, D, Flocco, D. 2015. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2052): 20140167. DOI: http://dx.doi.org/10.1098/rsta.2014.0167.
Uhlig, C, Damm, E, Peeken, I, Krumpen, T, Rabe, B, Korhonen, M, Ludwichowski, KU. 2019. Sea ice and water mass influence dimethylsulfide concentrations in the central Arctic Ocean. Frontiers in Earth Science 7: 179. DOI: http://dx.doi.org/10.3389/feart.2019.00179.
Ulfsbo, A, Cassar, N, Korhonen, M, van Heuven, S, Hoppema, M, Kattner, G, Anderson, LG. 2014. Late summer net community production in the central Arctic Ocean using multiple approaches. Global Biogeochemical Cycles 28(10): 1129-1148. DOI: http://dx.doi.org/10.1002/2014GB004833.
Underwood, GJ, Michel, C, Meisterhans, G, Niemi, A, Belzile, C, Witt, M, Dumbrell, AJ, Koch, BP. 2019. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nature Climate Change 9(2): 170-176. DOI: http://dx.doi.org/10.1038/s41558-018-0391-7.
Untersteiner, N, Badgley, FI. 1958. Preliminary results of thermal budget studies on Arctic pack ice during summer and autumn. Arctic Sea Ice 598: 85-92.
Uusikivi, J, Vähätalo, AV, Granskog, MA, Sommeruga, R. 2010. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnology and Oceanography 55(2): 703-713. DOI: http://dx.doi.org/10.4319/lo.2010.55.2.0703.
Van Leeuwe, MA, Webb, AL, Venables, HJ, Visser, RJ, Meredith, MP, Elzenga, JTM, Stefels, J. 2020. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnology and Oceanography 65(7): 1651-1668. DOI: http://dx.doi.org/10.1002/lno.11477.
Vancoppenolle, M, Meiners, KM, Michel, C, Bopp, L, Brabant, F, Carnat, G, Delille, B, Lannuzel, D, Madec, G, Moreau, S, Tison, JL. 2013. Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quaternary Science Reviews 79: 207-230. DOI: http://dx.doi.org/10.1016/j.quascirev.2013.04.011.
Verdugo, J, Damm, E, Nikolopoulos, A. 2021. Methane cycling within sea ice: Results from drifting ice during late spring, north of Svalbard. The Cryosphere 15(6): 2701-2717. DOI: http://dx.doi.org/10.5194/tc-15-2701-2021.
Vihma, T, Pirazzini, R, Fer, I, Renfrew, IA, Sedlar, J, Tjernström, M, Lüpkes, C, Nygård, T, Notz, D, Weiss, J, Marsan, D, Cheng, B, Birnbaum, G, Gerland, S, Chechin, D, Gascard, JC. 2014. Advances in understanding and parameterization of smallscale physical processes in the marine Arctic climate system: A review. Atmospheric Chemistry and Physics 14(17): 9403-9450. DOI: http://dx.doi.org/10.5194/acp-14-9403-2014.
Wadhams, P, Martin, S. 1990. Processes determining the bottom topography of multiyear Arctic sea ice, in Ackley, SF, Weeks, WF eds., Sea ice properties and processes, CRREL Monogr. 90-1. Hanover, NH: U.S. Army Cold Regions Research and Engineering Laboratory: 136-141.
Wand, U, Samarkin, VA, Nitzsche, H-M, Hubberten, HW. 2006. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud land, East Antarctica. Limnology and Oceanography 51(2): 1180-1194. DOI: http://dx.doi.org/10.4319/lo.2006.51.2.1180.
Wang, C, Shi, L, Gerland, S, Granskog, MA, Renner, AH, Li, Z, Hansen, E, Martma, T. 2013. Spring sea-ice evolution in Rijpfjorden (80_N), Svalbard, from in situ measurements and ice mass-balance buoy (IMB) data. Annals of Glaciology 54(62): 253-260. DOI: http://dx.doi.org/10.3189/2013AoG62A135.
Wang, M, Su, J, Landy, J, Leppäranta, M, Guan, L. 2020. A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery. Journal of Geophysical Research 125(10): e2019JC015716. DOI: http://dx.doi.org/10.1029/2019JC015716.
Webster, MA, Holland, M, Wright, NC, Hendricks, S, Hutter, N, Itkin, P, Light, B, Linhardt, F, Perovich, DK, Raphael, IA, Smith, MM, Albedyll, Lv, Zhang, J. 2022. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results. Elementa: Science of the Anthropocene 10(1): 000072. DOI: http://dx.doi.org/10.1525/elementa.2021.000072.
Weiss, RF. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2: 203-215.
Werner, I. 2006. Seasonal dynamics of sub-ice fauna below pack ice in the Arctic (Fram Strait). Deep Sea Research Part I: Oceanographic Research Papers 53(2): 294-309. DOI: http://dx.doi.org/10.1016/j.dsr.2005.11.001.
Weslawski, JM, Legezynska, J. 1998. Glaciers caused zooplankton mortality? Journal of Plankton Research 20(7): 1233-1240. DOI: http://dx.doi.org/10.1093/plankt/20.7.1233.
Wright, DG, Pawlowicz, R, McDougall, TJ, Feistel, R, Marion, GM. 2011. Absolute Salinity, “Density Salinity” and the Reference-Composition Salinity Scale: Present and future use in the seawater standard TEOS-10. Ocean Science 7(1): 1-26. DOI: http://dx.doi.org/10.5194/os-7-1-2011.
Wright, NC, Polashenski, CM, McMichael, ST, Beyer, RA. 2020. Observations of sea ice melt from Operation IceBridge imagery. The Cryosphere 14(10): 3523-3536. DOI: http://dx.doi.org/10.5194/tc-14-3523-2020.
Xu, D, Kong, H, Yang, EJ, Li, X, Jiao, N, Warren, A, Wang, Y, Lee, Y, Jung, J, Kang, SH. 2020. Contrasting community composition of active microbial eukaryotes in melt ponds and sea water of the Arctic Ocean revealed by high throughput sequencing. Frontiers in Microbiology 11: 1170. DOI: http://dx.doi.org/10.3389/fmicb.2020.01170.
Zanowski, H, Jahn, A, Holland, MM. 2021. Arctic Ocean freshwater in CMIP6 ensembles: Declining sea ice, increasing ocean storage and export. Journal of Geophysical Research 126(4): e2020JC016930. DOI: http://dx.doi.org/10.1029/2020JC016930.
Zeebe, RE, Wolf-Gladrow, DA. 2001. CO2 in seawater: Equilibrium, kinetics, isotopes. Amsterdam, the Netherlands: Elsevier. (Elsevier Oceanography Series; vol. 65).
Zeng,YX, Zhang, F, He, JF, Lee, SH, Qiao, ZY, Yu, Y, Li, HR. 2013. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16SrRNA genes. Antonie Van Leeuwenhoek 103: 1309-1319. DOI: http://dx.doi.org/10.1007/s10482-013-9912-6.
Zeppenfeld, S, van Pinxteren, M, Hartmann, M, Bracher, A, Stratmann, F, Herrmann, H. 2019. Glucose as a potential chemical marker for ice nucleating activity in Arctic seawater and melt pond samples. Environmental Science & Technology 53(15): 8747-8756. DOI: http://dx.doi.org/10.1021/acs.est.9b01469.
Zhan, L, Wu, M, Chen, L, Zhang, J, Li, Y, Liu, J. 2017. The air-sea nitrous flux along cruise tracks to the Arctic Ocean and Southern Ocean. Atmosphere 8(11): 216. DOI: http://dx.doi.org/10.3390/atmos8110216.
Zhan, L, Zhang, J, Ouyang, Z, Xu, S, Qi, D, Gao, Z, Sun, H, Li, Y, Wu, M, Liu, J, Chen, L. 2020. Highresolution distribution pattern of surface water nitrous oxide along a cruise track from the Okhotsk Sea to the western Arctic Ocean. Limnology and Oceanography 66(51): S401-S410. DOI: http://dx.doi.org/10.1002/lno.11604.
Zhang, Q, Gradinger, R, Spindler, M. 1999. Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea. Boreal Environment Research 4(1): 1-8.