Pollution; Waste Management and Disposal; Water Science and Technology; Ecological Modeling; Environmental Engineering; Civil and Structural Engineering
Abstract :
[en] Atmospheric water harvesting (AWH) technology is an emerging sustainable development strategy to deal with global water scarcity. To better understand the current state of AWH technology development, we conducted a bibliometric analysis highlighting three water harvesting technologies (fog harvesting, condensation, and sorption). By comprehensively reviewing the research progress and performing a comparative assessment of these technologies, we summarized past achievements and critically analyzed the different technologies. Traditional fog collectors are more mature, but their efficiency still needs to be improved. External field-driven fog harvesting and active condensation need to be driven by external forces, and passive condensation has high requirements for environmental humidity. Emerging bio-inspired fog harvesting and sorption technology provide new possibilities for atmospheric water collection, but they have high requirements for materials, and their commercial application is still to be further promoted. Based on the key characteristics of each technology, we presented the development prospects for the joint use of integrated/hybrid systems. Next, the water-energy relationship is used as a link to clarify the future development strategy of AWH technology in energy driving and conversion. Finally, we outlined the core ideas of AWH for both basic research and practical applications and described its limitless possibilities for drinking water supply and agricultural irrigation. This review provides an essential reference for the development and practical application of AWH technologies, which contribute to the sustainable utilization of water resources globally.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
An, H., Chen, Y., Wang, Y., Liu, X., Ren, Y., Kang, Z., Li, J., Li, L., High-performance solar-driven water harvesting from air with a cheap and scalable hygroscopic salt modified metal–organic framework. Chem. Eng. J., 461, 2023, 141955.
Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., Jiang, L., Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv. Mater. 26 (2014), 5025–5030.
Bai, H., Zhao, T., Wang, X., Wu, Y., Li, K., Yu, C., Jiang, L., Cao, M., Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art. J. Mater. Chem. A, 8, 2020 13452-1345.
Barthlott, W., Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1997), 1–8.
Beysens, D., Milimouk, I., The case for alternative fresh water sources. Sécheresse. 11 (2000), 1–16.
Chen, Y., Zheng, Y., Bioinspired micro-/nanostructure fibers with a water collecting property. Nanoscale 6 (2014), 7703–7714.
Chen, X., Li, X., Zuo, P., Liang, M., Li, X., Xu, C., Yuan, Y., Wang, S., Three-dimensional maskless fabrication of bionic unidirectional liquid spreading surfaces using a phase spatially shaped femtosecond laser. ACS Appl. Mater. Interfaces 13 (2021), 13781–13791.
Chen, Z., Shi, J., Li, Y., Ma, B., Yan, X., Liu, M., Jin, H., Li, D., Jing, D., Guo, L., Recent progress of energy harvesting and conversion coupled with atmospheric water gathering. Energy Convers. Manag., 246, 2021, 114668.
Colusso, E., Martucci, A., Neto, C., Fabrication of biomimetic micropatterned surfaces by sol-gel dewetting. Adv. Mater. Interfaces, 6, 2019, 1801629.
Comanns, P., Effertz, C., Hischen, F., Staudt, K., Böhme, w., Baumgartner, w., Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2 (2011), 204–214.
Cruzat, D., Jerez-Hanckes, C., Electrostatic fog water collection. J. Electrostat. 96 (2018), 128–133.
Damak, M., Varanasi, K.K., Electrostatically driven fog collection using space charge injection. Sci. Adv., 4, 2018, eaao5323.
Dash, A., Mohapatra, A., Atmospheric Water Generator: To Meet the Drinking Water Requirements of a Household in Coastal Regions of India. 2015, Department of Mechanical Engineering, NIT, Rourkela, Odisha-769008.
Ding, Y., Tu, K., Burgert, I., Keplinger, T., Janus wood membranes for autonomous water transport and fog collection. J. Mater. Chem. A 8 (2020), 22001–22008.
Dorvee, J.R., Derfus, A.M., Bhatia, S.N., Sailor, M.J., Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat. Mater. 3 (2004), 896–899.
Ejeian, M., Wang, R.Z., Adsorption-based atmospheric water harvesting. Joule 5 (2021), 1678–1703.
Fan, H., Guo, Z., WO3-based slippery coatings with long-term stability for efficient fog harvesting. J. Colloid Interface Sci. 591 (2021), 418–442.
Fathieh, F., Kalmutzki, M.J., Kapustin, E.A., Waller, P.J., Yang, J.J., Yaghi, O.M., Practical water production from desert air. Sci. Adv., 4, 2018, eaat3198.
Fernandez, D.M., Oliphant, A., Bowman, M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J.A., Fog water collection effectiveness: mesh intercomparisons. Aerosol Air Qual. Res., 18, 2018 270-28.
Fessehaye, M., Abdul-Wahab, S.A., Savage, M.J., Kohler, T., Gherezghiher, T., Hurni, H., Fog-water collection for community use. Renew. Sustain. Energy Rev. 29 (2014), 52–62.
Ghosh, R., Ray, T.K., Ganguly, R., Cooling tower fog harvesting in power plants—a pilot study. Energy 89 (2015), 1018–1028.
Gido, B., Friedler, E., Broday, D.M., Assessment of atmospheric moisture harvesting by direct cooling. Atmos. Res. 182 (2016), 156–162.
Gou, X., Guo, Z., Hybrid hydrophilic-hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir 36 (2020), 64–73.
Gschneidner, K.A. Pecharsky, V.K., Jiles, D., Zimm, C.B., 2018. Development of vehicle magnetic air conditioner (VMAC) technology. Final report. Office of Scientific & Technical Information Technical Reports. https://doi.org/10.2172/771244.
Guo, J., Huang, W., Guo, Z., Liu, W., Design of a venation-like patterned surface with hybrid wettability for highly efficient fog harvesting. Nano Lett. 22 (2022), 3104–3111.
Guo, Y., Guan, W., Lei, C., Lu, H., Shi, W., Yu, G., Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun., 13, 2022, 2761.
Haechler, I., Park, H., Schnoering, G., Rohner, T.G.M., Tripathy, A., Milionis, A., Schutzius, T.M., Poulikakos, D., Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv., 7, 2021, eabf3978.
Hanikel, N., Prévot, M.S., Fathieh, F., Kapustin, E.A., Lyu, H., Wang, H., Diercks, N.J., Glover, T.G., Yaghi, O.M., Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5 (2019), 1699–1706.
Ibrahim, N.I., Al-sulaiman, F.A., Saidur, R., Performance assessment of water production from solar cooling system in humid climate. Energy Convers. Manag. 127 (2016), 647–655.
Inbar, O., Gozlan, I., Ratner, S., Aviv, Y., Sirota, R., Avisar, D., Producing safe drinking water using an atmospheric water generator (AWG) in an urban environment. Water, 12, 2020, 2940.
Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., Jiang, L., A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun., 3, 2012, 124.
Kadhim, T.J., Abbas, A.K., Kadhim, H.J., et al. Experimental study of atmospheric water collection powered by solar energy using the Peltier effect. IOP Conf. Ser., 671, 2020, 012155.
Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., Ozga-Zielinski, B., A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustain. Water Resour. Manag. 2 (2015), 71–86.
Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kaoustin, E.A., Furukawa, H., Umans, A., Yaghi, O.M., Wang, E.N., Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356, 2017, 430.
Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., Wang, E.N., Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun., 9, 2018, 1191.
Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., Fessehaye, G.M., Fog as a fresh-water resource: overview and perspectives. Ambio 41 (2012), 221–234.
Koop, S.H.A., Gruson, C., Eisenreish, S.J., Hofman, J., Leeuwen, K., Integrated water resources management in cities in the world: global solutions. Sustain. Cities Soc., 86, 2022, 104137.
Kostal, E., Stroj, S., Kasemann, S., Matylitsky, V., Domke, M., Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers. Langmuir, 34, 2018 2933-294.
Kwan, T.H., Yuan, S., Shen, Y., Pei, G., Comparative meta-analysis of desalination and atmospheric water harvesting technologies based on the minimum energy of separation. Energy Rep. 8 (2022), 10072–10087.
LaPotin, A., Kim, H., Rao, S.R., Wang, E.N., Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52 (2019), 1588–1597.
LaPotin, A., Zhong, Y., Zhang, L., Zhao, L., Leroy, A., Kim, H., Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5 (2021), 166–182.
Li, Z., Tao, R., Performance enhancement of desiccant wheels by adsorption/desorption in stages with type-S isotherm desiccants. Appl. Therm. Eng., 224, 2023, 120068.
Li, R., Shi, Y., Shi, L., Alsaedi, M.K., Wang, P., Harvesting water from air: using anhydrous salt with sunlight. Environ. Sci. Technol. 52 (2018), 5398–5406.
Li, W., Dong, M., Fan, L., John, J.J., Chen, Z., Fan, S., Nighttime radiative cooling for water harvesting from solar panels. ACS Photonics 8 (2020), 269–275.
Li, R., Shi, Y., Wu, M., Hong, S., Wang, P., An integrated solar-driven system produces electricity with fresh water and crops in arid regions. Cell Rep. Phys. Sci., 3, 2022, 100781.
Li, H., Zhang, Z., Ren, Z., Chen, Y., Huang, J., Lei, Z., Qian, X., Lai, Y., Zhang, S., A quadruple biomimetic hydrophilic/hydrophobic Janus composite material integrating Cu(OH)2 micro-needles and embedded bead-on-string nanofiber membrane for efficient fog harvesting. Chem. Eng. J., 455, 2023, 140863.
Li, R., Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy, 67, 2020, 104255.
Liu, X., Beysens, D., Bourouina, T., Water harvesting from air: current passive approaches and outlook. ACS Mater. Lett. 4 (2022), 1003–1024.
Logan, M.W., Langevin, S., Xia, Z., Reversible Atmospheric water harvesting using metal-organic frameworks. Sci. Rep., 10, 2020, 149.
Loo, S.L., Vásquez, L., Athanassiou, A., Fragouli, D., Polymeric hydrogels—a promising platform in enhancing water security for a sustainable future. Adv. Mater. Interfaces, 8, 2021, 202100580.
Lu, H., Shi, W., Guo, Y., Guan, W., Lei, C., Yu, G., Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater., 34, 2022, e211007.
Lummerich, A.T.K, Fog harvesting on the verge of economic competitiveness. Erdkunde 65 (2011), 305–306.
Lyu, T., Wang, Z., Liu, R., Chen, K., Liu, H., Tian, Y., Macroporous hydrogel for high-performance atmospheric water harvesting. ACS Appl. Mater. Interfaces 14 (2022), 32433–33244.
Ma, X., Cao, M., Teng, C., Li, H., Xiao, J., Liu, K., Jiang, L., Bio-inspired humidity responsive switch for directional water droplet delivery. J. Mater. Chem. A 3 (2015), 15540–15545.
Mekonnen, M.M., Hoekstra, A.Y., Four billion people facing severe water scarcity. Sci. Adv., 2, 2016, e1500323.
Mitchell, D., Henschel, J.R., Hetem, R.S., Wassenaar, T.D., Strauss, W.M., Hanrahan, S.A., Seely, M.K., Fog and fauna of the Namib Desert: past and future. Ecosphere, 11, 2020, e02996.
Moazzam, P., Tavassoli, H., Razmjou, W.M.E., Asadnia, M., Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination 429 (2018), 111–118.
Montecinos, S., Carvajal, D., Cereced, P., Concha, M., Collection efficiency of fog events. Atmos. Res. 209 (2018), 163–169.
Mugele, F., Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics. Soft Matter 5 (2009), 3377–3384.
Nørgaard, T., Dacke, M., Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool., 7, 2010, 23.
Oki, T., Kanae, S., Global hydrological cycles and world water resources. Science 313 (2006), 1068–1072.
Oliveira, R.F., Carneiro, L.A., Canário, A.V.M., Behavioural endocrinology: no hormonal response in tied fights. Nature 437 (2005), 207–208.
Panigrahi, N., Venkatesan, K., Ramanan, M.V., Performance study of thermoelectric cooler using multiphysics simulation and numerical modelling. Int. J. Ambient Energy 42 (2019), 1600–1606.
Park, K.C., Chhatre, S.S., Srinivasan, S., Cohen, R.E., McKinley, G.H., Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 29, 2013 13269-1327.
Parker, A.R., Lawrence, C.R., Water capture by a desert beetle. Nature 414 (2001), 33–34.
Peters, G.M., Blackburn, N.J., Armedion, M., Environmental assessment of air to water machines—triangulation to manage scope uncertainty. Int. J. Life Cycle Assess. 18 (2013), 1149–1157.
Pinto, F.S., Marques, R.C., Desalination projects economic feasibility: a standardization of cost determinants. Renew. Sustain. Energy Rev. 78 (2017), 904–915.
Rajaram, M., Heng, X., Oza, M., Luo, C., Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids Surf. A Physicochem. Eng. Asp. 508 (2016), 218–222.
Raveesh, G., Goyal, R., Tyagi, S.K., Advances in atmospheric water generation technologies. Energy Convers. Manag., 239, 2021, 114226.
Rivera, J.d.D., Aerodynamic collection efficiency of fog water collectors. Atmos. Res. 102 (2011), 335–342.
Salehi, A.A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torkaman, R., Asadollahzadeh, M., A review on the water-energy nexus for drinking water production from humid air. Renew. Sustain. Energy Rev., 120, 2020, 109627.
Schemenauer, R.S., Cereceda, P., A proposed standard fog collector for use in high elevation regions. J. Meteorol. Res. 33 (1994), 1313–1322.
Shafeian, N., Ranjbar, A.A., Gorji, T.B., Progress in atmospheric water generation systems: a review. Renew. Sustain. Energy Rev., 161, 2022, 112325.
Shahvari, S.Z., Clark, J.D., Approaching theoretical maximum energy performance for desiccant dehumidification using staged and optimized metal-organic frameworks. Appl. Energy, 331, 2023, 120421.
Shan, H., Li, C., Chen, Z., Ying, W., Poredoš, P., Ye, Z., Pan, Q., Wang, J., Wang, R., Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nat. Commun., 13, 2022, 5406.
Shanyengana, E.S., Sanderson, R.D., Seely, M.K., Schemenauer, R.S., Testing greenhouse shade nets in collection of fog for water supply. J. Water Supply 52 (2003), 237–241.
Sharifvaghefi, S., Kazerooni, H., Fog harvesting: combination and comparison of different methods to maximize the collection efficiency. SN Appl. Sci., 3, 2021, 516.
Shi, W., Anderson, M.J., Tulkoff, J.B., Kennedy, B.S., Boreyko, J.B., Fog harvesting with harps. ACS Appl. Mater. Interfaces 10 (2018), 11979–11986.
Shi, R., Tian, Y., Wang, L., Bioinspired fibers with controlled wettability: from spinning to application. ACS Nano, 15, 2021 7907-793.
Shourideh, A.H., Ajram, W.B., Lami, J.A., Haggag, S., Mansiuri, A., A comprehensive study of an atmospheric water generator using Peltier Effect. Therm. Sci. Eng. Prog. 6 (2018), 14–26.
Siddiqui, M.A., Azam, M.A., Khan, M.M., Iqbal, S., Khan, M.U., Raffat, Y., Current trends on extraction of water from air: an alternative solution to water supply. Int. J. Environ. Sci. Technol. 20 (2022), 1053–1080.
Song, W., Zheng, Z., Alawadhi, A.H., Yaghi, O.M., MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water 1 (2023), 626–634.
Thakur, N., Ranganath, A.S., Agarwal, K., Baji, A., Electrospun bead-on-string hierarchical fibers for fog harvesting application. Macromol. Mater. Eng., 302, 2017, 1700124.
Tian, Y., Zhu, P., Tang, X., Zhou, C., Wang, J., Kong, T., Xu, M., Wang, L., Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun., 8, 2017, 1080.
Traipattanakul, B., Tso, C.Y., Chao, C.Y.H., Study of jumping water droplets on superhydrophobic surfaces with electric fields. Int. J. Heat Mass Transf. 115 (2017), 672–681.
Tu, R., Hwang, Y., Efficient configurations for desiccant wheel cooling systems using different heat sources for regeneration. Int. J. Refrig. 86 (2017), 14–27.
Tu, R., Hwang, Y., Performance analyses of a new system for water harvesting from moist air that combines multi-stage desiccant wheels and vapor compression cycles. Energy Convers. Manag., 198, 2019, 111811.
Tu, Y.D., Wang, R.Z., Ge, T.S., New concept of desiccant-enhanced heat pump. Energy Convers. Manag. 156 (2018), 568–574.
Tu, Y., Wang, R., Zhang, Y., Wang, J., Progress and expectation of atmospheric water harvesting. Joule, 2, 2018 1452-147.
Wang, T., Wu, Y., Shi, L., Hu, X., Chen, M., Wu, L., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun., 12, 2021, 365.
Wang, M., Zhao, Z., Lin, S., Su, M., Liang, B., Liang, S., et al. New insight into the co-adsorption of oxytetracycline and Pb(II) using magnetic metal-organic frameworks composites in aqueous environment: co-adsorption mechanisms and application potentials. Environ. Sci. Pollut. Res. 29 (2022), 50177–50191.
Wang, W., Pan, Q., Xing, Z., Liu, X., Dai, Y., Wang, R., Ge, T., Viability of a practical multicyclic sorption-based water harvester with improved water yield. Water Res., 211, 2022, 118029.
Wang, Z., Li, H., Yang, X., Guan, M., Wang, L., Multi-bioinspired janus copper mesh for improved gravity-irrelevant directional water droplet and flow transport. Langmuir 38 (2022), 2137–2214.
Wasti, T.Z., Sultan, M., Aleem, M., Sajjad, U., Farooq, M., Raza, H.M., Khan, M.U., Noor, S., An overview of solid and liquid materials for adsorption-based atmospheric water harvesting. Adv. Mech. Eng. 14 (2022), 1–27.
Yang, J., Zhang, X., Qu, H., Yu, Z.G., Zhang, Y., Eey, T.J., Zhang, Y., Tan, S.C., A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv. Mater., 32, 2020, e2002936.
Yang, K., Shi, Y., Wu, M., Wang, W., Jin, Y., Li, R., Shahzad, M.W., Ng, K.C., Wang, P., Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8 (2020), 1887–1895.
Yang, K., Pan, T., Lei, Q., Dong, X., Cheng, Q., Han, Y., A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55 (2021), 6542–6560.
Yi, S., Wang, J., Chen, Z., Liu, B., Ren, L., Liang, L., Jiang, L., Cactus-inspired conical spines with oriented microbarbs for efficient fog harvesting. Adv. Mater. Technol., 4, 2019, 1900727.
Yilmaz, G., Meng, F.L., Lu, W., Abed, J., Peh, C.K.N., Gao, M., Sargent, E.H., Ho, G.W., Autonomous atmospheric water seeping MOF matrix. Sci. Adv., 6, 2020, eabc8605.
Yin, K., Du, H., Dong, X., Wang, C., Duan, J.A., He, J., A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale 9 (2017), 14620–14626.
Yu, Z., Zhang, H., Huang, J., Li, S., Zhang, S., Cheng, Y., Mao, J., Dong, X., Gao, S., Wang, S., Chen, Z., Jiang, Y., Lai, Y., Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. J. Mater. Sci. Technol. 61 (2021), 85–92.
Yu, Z., Zhu, T., Zhang, J., Ge, M., Fu, S., Lai, Y., Fog harvesting devices inspired from single to multiple creatures: current progress and future perspective. Adv. Funct. Mater., 32, 2022, 2200359.
Zavala, M.Á.L., Cruz-Prieto, M.J., Rojas, C., Rainwater harvesting as an alternative for water supply in regions with high water stress. Water Sci. Technol. Water Supply 18 (2018), 1946–1955.
Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., Yin, X., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355 (2017), 1062–1066.
Zhang, S., Huang, J., Chen, Z., Lai, Y., Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small, 13, 2017, 1602992.
Zhao, C., Li, P., Li, Z., Peng, S., Incorporation of superamphiphobic and slippery patterned materials for water collection inspired by beetle, cactus, and Nepenthes. New J. Chem. 47 (2023), 1962–1972.
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F., Zhao, Y., Zhai, J., Jiang, L., Directional water collection on wetted spider silk. Nature 463 (2010), 640–643.
Zhou, X., Lu, H., Zhao, F., Yu, G., Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2 (2020), 671–684.
Zhou, X., Zhang, P., Zhao, F., Yu, G., Super Moisture absorbent gels for sustainable agriculture via atmospheric water irrigation. ACS Mater. Lett. 2 (2020), 1419–1422.
Zhu, H., Duan, R., Wang, X., Yang, J., Wang, J., Huang, Y., Xia, F., Prewetting dichloromethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib Desert beetles and mussels. Nanoscale 10 (2018), 13045–13054.
Zhu, H., Cai, S., Zhou, J., Li, S., Wang, D., Zhu, J., Wu, Y., Huang, Y., Yuan, S., Jin, S., Xia, F., Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. Water Res., 206, 2021, 117759.
Zhu, W., Zhang, Y., Zhang, C., Shan, X., Rao, A.K., Pitts, S.L., Woodbury, T.J., Masnyk, T.S., Derome, D., Warsinger, D.M., Ruan, X., Mauer, L.J., Carmeliet, J., Li, T., Radiative cooling sorbent towards all weather ambient water harvesting. Commun. Eng., 2, 2023, 35.
Zolfagharkhani, S., Zamen, M., Shahmardan, M.M., Thermodynamic analysis and evaluation of a gas compression refrigeration cycle for fresh water production from atmospheric air. Energy Convers. Manag. 170 (2018), 97–107.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.