G protein-coupled receptor; biochemistry; chemical biology; free fatty acid; mouse; phosphorylation; Fatty Acids, Nonesterified; Fatty Acids, Volatile; Receptors, G-Protein-Coupled; FFA2R protein, human; Animals; Humans; Mice; Cell Line; Fatty Acids, Volatile/metabolism; Mice, Transgenic; Phosphorylation; Receptors, G-Protein-Coupled/metabolism; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Abstract :
[en] Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer296/pSer297 or pThr306/pThr310 provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ. In white adipose tissue, phosphorylation of residues Ser296/Ser297 was enhanced upon agonist activation whilst Thr306/Thr310 did not become phosphorylated. By contrast, in immune cells from Peyer's patches Thr306/Thr310 become phosphorylated in a strictly agonist-dependent fashion whilst in enteroendocrine cells of the colon both Ser296/Ser297 and Thr306/Thr310 were poorly phosphorylated. The concept of phosphorylation bar-coding has centred to date on the potential for different agonists to promote distinct receptor phosphorylation patterns. Here, we demonstrate that this occurs for the same agonist-receptor pairing in different patho-physiologically relevant target tissues. This may underpin why a single G protein-coupled receptor can generate different functional outcomes in a tissue-specific manner.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Barki, Natasja ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Jenkins, Laura; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Marsango, Sara; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Dedeo, Domonkos ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Bolognini, Daniele; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Dwomoh, Louis ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Abdelmalik, Aisha M; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Nilsen, Margaret; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Stoffels, Manon ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Molecular Pharmacology ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Nagel, Falko; 7TM Antibodies GmbH, Jena, Germany
Schulz, Stefan; 7TM Antibodies GmbH, Jena, Germany ; Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
Tobin, Andrew B ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Milligan, Graeme ; Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Alvarez-Curto E, Milligan G. 2016. Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochemical Pharmacology 114:3–13. DOI: https://doi.org/10.1016/j.bcp.2016.03.017, PMID: 27002183
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang L-Y, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. 2022. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 185:1661–1675. DOI: https:// doi.org/10.1016/j.cell.2022.03.042, PMID: 35483373
Barki N, Bolognini D, Börjesson U, Jenkins L, Riddell J, Hughes DI, Ulven T, Hudson BD, Ulven ER, Dekker N, Tobin AB, Milligan G. 2022. Chemogenetics defines a short-chain fatty acid receptor gut-brain axis. eLife 11:e73777. DOI: https://doi.org/10.7554/eLife.73777, PMID: 35229717
Bolognini D, Moss CE, Nilsson K, Petersson AU, Donnelly I, Sergeev E, König GM, Kostenis E, Kurowska-Stolarska M, Miller A, Dekker N, Tobin AB, Milligan G. 2016a. A novel allosteric activator of free fatty acid 2 receptor displays unique gi-functional bias. The Journal of Biological Chemistry 291:18915–18931. DOI: https://doi.org/10.1074/jbc.M116.736157, PMID: 27385588
Bolognini D, Tobin AB, Milligan G, Moss CE. 2016b. The pharmacology and function of receptors for short-chain fatty acids. Molecular Pharmacology 89:388–398. DOI: https://doi.org/10.1124/mol.115.102301, PMID: 26719580
Bolognini D, Barki N, Butcher AJ, Hudson BD, Sergeev E, Molloy C, Moss CE, Bradley SJ, Le Gouill C, Bouvier M, Tobin AB, Milligan G. 2019. Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nature Chemical Biology 15:489–498. DOI: https://doi.org/10.1038/s41589-019-0270-1, PMID: 30992568
Bradley SJ, Tobin AB, Prihandoko R. 2018. The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system. Neuropharmacology 136:421–426. DOI: https://doi.org/10.1016/j.neuropharm.2017.11.043, PMID: 29191752
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, et al. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry 278:11312–11319. DOI: https://doi.org/10.1074/jbc.M211609200, PMID: 12496283
Budd DC, McDonald JE, Tobin AB. 2000. Phosphorylation and regulation of a Gq/11-coupled receptor by casein kinase 1alpha. The Journal of Biological Chemistry 275:19667–19675. DOI: https://doi.org/10.1074/jbc. M000492200, PMID: 10777483
Butcher AJ, Bradley SJ, Prihandoko R, Brooke SM, Mogg A, Bourgognon J-M, Macedo-Hatch T, Edwards JM, Bottrill AR, Challiss RAJ, Broad LM, Felder CC, Tobin AB. 2016. An antibody biosensor establishes the activation of the m1 muscarinic acetylcholine receptor during learning and memory. The Journal of Biological Chemistry 291:8862–8875. DOI: https://doi.org/10.1074/jbc.M115.681726, PMID: 26826123
Cahill TJ, Thomsen ARB, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang L-Y, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, Little J, Antar A, Blanc A, Qu C-X, Chen X, Kawakami K, et al. 2017. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. PNAS 114:2562–2567. DOI: https://doi.org/10.1073/pnas.1701529114, PMID: 28223524
Chun E, Lavoie S, Fonseca-Pereira D, Bae S, Michaud M, Hoveyda HR, Fraser GL, Gallini Comeau CA, Glickman JN, Fuller MH, Layden BT, Garrett WS. 2019. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51:871–884.. DOI: https://doi.org/10.1016/j.immuni. 2019.09.014, PMID: 31628054
Divorty N, Jenkins L, Ganguly A, Butcher AJ, Hudson BD, Schulz S, Tobin AB, Nicklin SA, Milligan G. 2022. Agonist-induced phosphorylation of orthologues of the orphan receptor GPR35 functions as an activation sensor. The Journal of Biological Chemistry 298:101655. DOI: https://doi.org/10.1016/j.jbc.2022.101655, PMID: 35101446
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Hicks C, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, et al. 2023. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. Cell Chemical Biology 30:362–382.. DOI: https://doi.org/10.1016/j.chembiol.2023.03.006, PMID: 37030291
Fritzwanker S, Nagel F, Kliewer A, Stammer V, Schulz S. 2023. In situ visualization of opioid and cannabinoid drug effects using phosphosite-specific GPCR antibodies. Communications Biology 6:419. DOI: https://doi.org/ 10.1038/s42003-023-04786-2, PMID: 37061609
Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams DR, Ulven T, Milligan G. 2012a. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB Journal 26:4951–4965. DOI: https://doi.org/10.1096/fj.12-213314, PMID: 22919070
Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. 2012b. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. The Journal of Biological Chemistry 287:41195–41209. DOI: https://doi.org/10.1074/jbc.M112.396259, PMID: 23066016
Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG, Ulven T, Milligan G. 2013. Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. The Journal of Biological Chemistry 288:17296–17312. DOI: https://doi.org/10.1074/jbc.M113.455337, PMID: 23589301
Ikeda T, Nishida A, Yamano M, Kimura I. 2022. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacology & Therapeutics 239:108273. DOI: https://doi.org/10.1016/j.pharmthera.2022.108273, PMID: 36057320
Ives AN, Dunn HA, Afsari HS, Seckler HDS, Foroutan MJ, Chavez E, Melani RD, Fellers RT, LeDuc RD, Thomas PM, Martemyanov KA, Kelleher NL, Vafabakhsh R. 2022. Middle-down mass spectrometry reveals activity-modifying phosphorylation barcode in a class C G protein-coupled receptor. Journal of the American Chemical Society 144:23104–23114. DOI: https://doi.org/10.1021/jacs.2c10697, PMID: 36475650
Kaya AI, Perry NA, Gurevich VV, Iverson TM. 2020. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. PNAS 117:14139–14149. DOI: https://doi.org/10.1073/pnas.1918736117, PMID: 32503917
Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, Townshend RJL, Bouvier M, Kobilka BK, Dror RO. 2020. How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling. Cell 183:1813–1825.. DOI: https://doi.org/10.1016/j.cell.2020.11.014, PMID: 33296703
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. 2021. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D2 receptor regulation and signaling. Scientific Reports 11:8288. DOI: https://doi.org/10.1038/s41598-021-87417-2, PMID: 33859231
Marsango S, Ward RJ, Jenkins L, Butcher AJ, Al Mahmud Z, Dwomoh L, Nagel F, Schulz S, Tikhonova IG, Tobin AB, Milligan G. 2022. Selective phosphorylation of threonine residues defines GPR84-arrestin interactions of biased ligands. The Journal of Biological Chemistry 298:101932. DOI: https://doi.org/10.1016/j.jbc.2022. 101932, PMID: 35427647
Matthees ESF, Haider RS, Hoffmann C, Drube J. 2021. Differential regulation of GPCRs-are GRK expression levels the key? Frontiers in Cell and Developmental Biology 9:687489. DOI: https://doi.org/10.3389/fcell.2021. 687489, PMID: 34109182
Milligan G, Bolognini D, Sergeev E. 2017a. Ligands at the free fatty acid receptors 2/3 (GPR43/GPR41). Experimental Pharmacology 236:17–32. DOI: https://doi.org/10.1007/164_2016_49, PMID: 27757758
Milligan G, Barki N, Tobin AB. 2021. Chemogenetic approaches to explore the functions of free fatty acid receptor 2. Trends in Pharmacological Sciences 42:191–202. DOI: https://doi.org/10.1016/j.tips.2020.12.003, PMID: 33495026
Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang T-Y, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. 2011. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Science Signaling 4:ra51. DOI: https://doi.org/10. 1126/scisignal.2001707, PMID: 21868357
Park JI, Cho SW, Kang JH, Park TE. 2023. Intestinal peyer’s patches: structure, function, and in vitro modeling. Tissue Engineering and Regenerative Medicine 20:341–353. DOI: https://doi.org/10.1007/s13770-023-00543-y, PMID: 37079198
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, et al. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research 47:D442–D450. DOI: https://doi.org/10.1093/nar/gky1106, PMID: 30395289
Pitcher JA, Freedman NJ, Lefkowitz RJ. 1998. G protein-coupled receptor kinases. Annual Review of Biochemistry 67:653–692. DOI: https://doi.org/10.1146/annurev.biochem.67.1.653, PMID: 9759500
Schlatterer K, Peschel A, Kretschmer D. 2021. Short-chain fatty acid and FFAR2 activation-a new option for treating infections? Frontiers in Cellular and Infection Microbiology 11:785833. DOI: https://doi.org/10.3389/ fcimb.2021.785833, PMID: 34926327
Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, et al. 2020. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Reports 30:2934–2947.. DOI: https://doi.org/10.1016/j.celrep.2020.02.013, PMID: 32130898
Sergeev E, Hansen AH, Bolognini D, Kawakami K, Kishi T, Aoki J, Ulven T, Inoue A, Hudson BD, Milligan G. 2017. A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias. Scientific Reports 7:13741. DOI: https://doi.org/10.1038/s41598-017-14096-3, PMID: 29061999
Shchepinova MM, Hanyaloglu AC, Frost GS, Tate EW. 2020. Chemical biology of noncanonical G protein-coupled receptor signaling: Toward advanced therapeutics. Current Opinion in Chemical Biology 56:98–110. DOI: https://doi.org/10.1016/j.cbpa.2020.04.012, PMID: 32446179
Stoddart LA, Smith NJ, Milligan G. 2008. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacological Reviews 60:405–417. DOI: https://doi.org/10.1124/pr.108.00802, PMID: 19047536
Sun N, Kim KM. 2021. Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Archives of Pharmacal Research 44:342–353. DOI: https://doi.org/10.1007/s12272-021-01320-y, PMID: 33761113
Tan JK, Macia L, Mackay CR. 2023. Dietary fiber and SCFAs in the regulation of mucosal immunity. The Journal of Allergy and Clinical Immunology 151:361–370. DOI: https://doi.org/10.1016/j.jaci.2022.11.007, PMID: 36543697
Tobin AB, Butcher AJ, Kong KC. 2008. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends in Pharmacological Sciences 29:413–420. DOI: https://doi. org/10.1016/j.tips.2008.05.006, PMID: 18606460
Torrecilla I, Spragg EJ, Poulin B, McWilliams PJ, Mistry SC, Blaukat A, Tobin AB. 2007. Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2. The Journal of Cell Biology 177:127–137. DOI: https://doi.org/10.1083/jcb.200610018, PMID: 17403928
Tran TM, Friedman J, Qunaibi E, Baameur F, Moore RH, Clark RB. 2004. Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the β2-adrenergic receptor using phosphoserine-specific antibodies. Molecular Pharmacology 65:196–206. DOI: https://doi.org/10.1124/mol.65.1.196
Wang L, Zhu L, Meister J, Bone DBJ, Pydi SP, Rossi M, Wess J. 2021. Use of DREADD technology to identify novel targets for antidiabetic drugs. Annual Review of Pharmacology and Toxicology 61:421–440. DOI: https:// doi.org/10.1146/annurev-pharmtox-030220-121042, PMID: 32746768
Xiao K, Sun J. 2018. Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. Cellular Signalling 41:56–64. DOI: https://doi.org/10.1016/j.cellsig.2017.09.013, PMID: 28939107
Xie L, Alam MJ, Marques FZ, Mackay CR. 2023. A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Seminars in Immunology 66:101737. DOI: https://doi.org/10.1016/j.smim.2023.101737, PMID: 36857894
Zhang B, Li S, Shui W. 2022. Post-translational modifications of g protein-coupled receptors revealed by proteomics and structural biology. Frontiers in Chemistry 10:843502. DOI: https://doi.org/10.3389/fchem.2022.843502, PMID: 35355784