[en] The Chinese tussah silkworm, Antheraea pernyi (Lepidoptera: Saturniidae) produces a rare dienoic sex pheromone composed of (E,Z)-6,11-hexadecadienal, (E,Z)-6,11-hexadecadienyl acetate and (E,Z)-4,9-tetradecadienyl acetate, and for which the biosynthetic routes are yet unresolved. By means of gland composition analyses and in vivo labeling we evidenced that pheromone biosynthesis towards the immediate dienoic gland precursor, the (E,Z)-6,11-hexadecadienoic acid, involves desaturation steps with Δ(6) and Δ(11) regioselectivity. cDNA cloning of pheromone gland desaturases and heterologous expression in yeast demonstrated that the 6,11-dienoic pheromone is generated from two biosynthetic routes implicating a Δ(6) and Δ(11) desaturase duo albeit with an inverted reaction order. The two desaturases first catalyze the formation of the (E)-6-hexadecenoic acid or (Z)-11-hexadecenoic acid, key mono-unsaturated biosynthetic intermediates. Subsequently, each enzyme is able to produce the (E,Z)-6,11-hexadecadienoic acid by accommodating its non-respective mono-unsaturated product. Besides elucidating an unusually flexible pheromone biosynthetic pathway, our data provide the first identification of a biosynthetic Δ(6) desaturase involved in insect mate communication. The occurrence of this novel Δ(6) desaturase function is consistent with an evolutionary scenario involving neo-functionalization of an ancestral desaturase belonging to a gene lineage different from the Δ(11) desaturases commonly involved in moth pheromone biosynthesis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Wang, Hong-Lei ✱; Chemical Ecology and Ecotoxicology, Department of Biology, Lund University, SE-223 62 Lund, Sweden
Lienard, Marjorie ✱; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases ; Chemical Ecology and Ecotoxicology, Department of Biology, Lund University, SE-223 62 Lund, Sweden
Zhao, Cheng-Hua; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Wang, Chen-Zhu; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Löfstedt, Christer; Chemical Ecology and Ecotoxicology, Department of Biology, Lund University, SE-223 62 Lund, Sweden
✱ These authors have contributed equally to this work.
Language :
English
Title :
Neofunctionalization in an ancestral insect desaturase lineage led to rare Δ6 pheromone signals in the Chinese tussah silkworm.
The authors are thankful towards Prof. Cai-Hong Wu (Peking University, China) for providing synthetic pheromone standards; Prof. Eric Hedenström and his group (Department of Natural Sciences, Engineering and Mathematics, Sundsvall, Sweden) for synthesizing the E6-16:Me, Prof. Zhong-Ning Zhang and Dr. Chao Che (Institute of Zoology, CAS, China) for assistance with chemical synthesis, Dr. Zeng-Liang Chen (Institute of Zoology, CAS, China) for assistance during insect collection and Jean-Marc Lassance (Department of Biology, Lund University, Sweden) for his advice. This study was financially supported by the Swedish research council (Vetenskapsrådet, project no. 621-2007-5659 ) and VR/SIDA Swedish Research Links (project no. 348-2005-6251 ), the National Basic Research Program of China (grant no. 2006CB102006 ) and the National Natural Science Foundation of China (grant no. 30621003 ).
Aki T., Shimada Y., Inagaki K., Higashimoto H., Kawamoto S., Shigeta S., Ono K., Suzuki O. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem. Biophys. Res. Commun. 1999, 255:575-579.
Ando T., Inomata S., Yamamoto M. Lepidopteran sex pheromones. Topics Curr. Chem. 2004, 239:951-961.
Attygalle A.B. Microchemical techniques. Chemical Methods 1998, vol. I:229-238. Springer, New York. J.G. Millar, K.F. Haynes (Eds.).
Beldade P., Saenko S., Pul N., Long A. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009, 5:e10000366. 10.1371/journal.pgen.1000366.
Bestmann H.J., Attygalle A.B., Brosche T., Erler J., Platz H., Schwarz J., Vostrowsky O., Wu C.H., Kaissling K.E., Chen T.M. Identification of three sex pheromone components of the female Saturniid moth Antheraea pernyi (Lepidoptera: Saturniidae). Z. Naturforsch. 1987, 42c:631-636.
Bjostad L.B., Wolf W., Roelofs W.L. Pheromone biosynthesis in lepidopterans: desaturation and chain shortening. Pheromone Biochemistry 1987, 77-120. Academic Press, New-York. G.J. Blomquist, G.D. Prestwich (Eds.).
Blomquist G.J., Jurenka R.A., Schal C., Tittiger C. Biochemistry and molecular biology of pheromone production. Comprehensive Molecular Insect Science 2005, 705-752. Elsevier Academic, Oxford. L.I. Gilbert, K. Iatrou, S. Gill (Eds.).
Buser H.-R., Arn H., Guerin P., Rauscher S. Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal. Chem. 1983, 55:818-822.
Cho H., Nakamura M., Clarke S. Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J. Biol. Chem. 1999, 274:471-477.
Damude H., Zhang H., Farrall L., Ripp K., Tomb J., Hollerbach D., Yadav N. Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:9446-9451.
Dunkelblum S.H., Silk P.J. Double bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four lepidoptera. J. Chem. Ecol. 1985, 11:265-277.
Hashimoto K., Yoshizawa A., Okuda S., Kuma K., Goto S., Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lip. Res. 2008, 49:183-191.
Hsiao T.Y., Holmes B., Blanch H.W. Identification and functional analysis of a delta6 desaturase from the marine microalga Glossomastix chrysoplasta. Mar. Biotechnol. 2007, 9:154-165.
Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9:286-298.
Knipple D.C., Rosenfield C.-L., Miller S.J., Liu W., Tang J., Ma P.W.K., Roelofs W.L. Cloning and functional expression of a cDNA encoding a pheromone gland-specific acyl-CoA Delta11- desaturase of the cabbage looper moth, Trichoplusia ni. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:15287-15292.
Knipple D.C., Rosenfield C.-L., Nielsen R., You K.M., Jeong S.E. Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 2002, 162:1737-1752.
Kochansky J., Tette J., Taschenberg E.F., Cardé R.T., Kaissling K.-E., Roelofs W.L. Sex pheromone of the moth Antheraea polyphemus. J. Insect Physiol. 1975, 21:1977-1983.
Liénard M.A., Strandh M., Hedenström E., Johansson T., Löfstedt C. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol. Biol. 2008, 8:270.
Liénard M.A., Lassance J.-M., Wang H.-L., Zhao C.-H., Piškur J., Johansson T., Löfstedt C. Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in Dendrolimus punctatus (Lepidoptera: Lasiocampidae) reveals Δ11- and Δ9-desaturases with unusual catalytic properties. Insect Biochem. Mol. Biol. 2010, 40:440-452.
Liu W., Jiao H., O'Connor M., Roelofs W.L. Moth desaturase characterized that produces both Z and E isomers of delta11-tetradecenoic acids. Insect Biochem. Mol. Biol. 2002, 32:1489-1495.
Liu W., Rooney A.P., Xue B., Roelofs W.L. Desaturases from the spotted fireworm moth (Choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases. Gene 2004, 342:303-311.
Löfstedt C., Hansson B.S., Tóth M., Szöcs G., Buda V., Bengtsson M., Ryrholm N., Svensson M., Priesner E. Pheromone differences between sibling taxa Diachrysia chrysitis (Linnaeus, 1758) and D. tutti (Kostrowicki, 1961) (Lepidoptera: Noctuidae). J. Chem. Ecol. 1994, 20:91-109.
Moto K., Suzuki M.G., Hull J.J., Kurata R., Takahashi S., Yamamoto M., Kazuhiro O., Imai K., Ando T., Matsumoto S. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:8631-8636.
Naka H., Vang L.V., Inomata S.-I., Ando T., Kimura T., Honda H., Tsuchida K., Sakurai H. Sex pheromone of the persimmon fruit moth, Stathmopoda masinissa: identification and laboratory bioassay of (4 E,6 Z)-4,6-hexadecadien-1-ol derivatives. J. Chem. Ecol. 2003, 29:2447-2459.
Napier J.A., Hey S., Lacey D., Shewry P. Identification of a Caenorhabditis elegans delta-6 fatty-acid desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem. J. 1998, 330:611-614.
Patel O., Fernley R., Macreadie I. Saccharomyces cerevisiae expression vectors with thrombin-cleavable N- and C-terminal 6x(His) tags. Biotechnol. Lett. 2003, 25:331-334.
Percy-Cunningham J.E., MacDonald J.A. Biology and ultrastructure of sex pheromone producing glands. Pheromone Biochemistry 1987, 27-76. Academic Press, New York. G.J. Blomquist, G.D. Prestwich (Eds.).
Pollard M.R., Gunstone F.D., James A.T., Morris L.J. Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids 1980, 15:306-314.
Reddy A.S., Thomas T.L. Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nat. Biotechnol. 1996, 14:639-642.
Roelofs W.L., Bjostad L. Biosynthesis of Lepidopteran pheromones. Bioorg. Chem. 1984, 12:279-298.
Roelofs W.L. Chemistry of sex attraction. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:44-49.
Roelofs W.L., Liu W., Hao G., Jiao H., Rooney A.P., Linn C.E. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13621-13626.
Roelofs W.L., Rooney A.P. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9179-9184.
Rosenfield C.-L., You K.M., Herrick-Marsella P., Roelofs W.L., Knipple D.C. Structural and functional conservation and divergence among acyl-CoA desaturases of two noctuid species, the corn earworm, Helicoverpa zea, and the cabbage looper, Trichoplusia ni. Insect Biochem. Mol. Biol. 2001, 31:949-964.
Sayanova O.V., Smith M.A., Lapinskas P., Stobart A.K., Dobson G., Christie W.W., Shewry P.R., Napier J.A. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:4211-4216.
Sayanova O.V., Napier J.A. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 2004, 65:147-158.
Schneiter R., Tatzer V., Gogg G., Leitner E., Kohlwein S.D. Elo1-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae. J. Bacteriol. 2000, 182:3655-3660.
Serra M., Piña B., Bujons J., Camps F., Fabriàs G. Biosynthesis of 10,12-dienoic fatty acids by a bifunctional Ä11 desaturase in Spodoptera littoralis. Insect Biochem. Mol. Biol. 2006, 36:634-641.
Serra M., Piña B., Abad J.L., Camps F., Fabriàs G. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16444-16449.
Shanklin J., Whittle E., Fox B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 1994, 33:12787-12794.
Shanklin J., Cahoon E.B. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49:611-641.
Shanklin J., Guy J.E., Mishra G., Lindqvist Y. Desaturases: emerging models for understanding functional diversification of Diiron-containing enzymes. J. Biol. Chem. 2009, 284:18559-18563.
Sperling P., Ternes P., Zank T.K., Heinz E. The evolution of desaturases. Prostag. Leukotr. Ess. 2003, 68:73-95.
Tamura K., Nei M., Kumar S. MEGA4: Molecular evolutionary genetics analysis software version 4.0. Mol. Biol. Evol. 2007, 24:1596-1599.
Wang H.L., Zhao C.H., Millar J.G., Cardé R.T., Löfstedt C. Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella. J. Chem. Ecol. 2010, 36:535-547.
Wolf W.A., Roelofs W.L. Properties of the Δ11-desaturase enzyme used in cabbage looper moth sex pheromone biosynthesis. Arch. Insect Biochem. Physiol. 1986, 3:45-52.
Yasukochi Y., Tanaka-Okuyama M., Shibata F., Yoshido A., Marec F., Wu C., Zhang H., Goldsmith M., Sahara K. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PloS One 2009, 4:e7465. 10.1371/journal.pone.0007465.
Zhou X.-R., Horne I., Damcevski K., Haritos V., Green A., Singh S. Isolation and functional characterization of two independently-evolved fatty acid Ä12-desaturase genes from insects. Insect Mol. Biol. 2008, 17:667-676.