[en] Imaging Earth-like planets around sun-like stars has become one of the main science drivers for future space telescope missions. High-contrast imaging using a vortex coronagraph has proven to be a promising approach for achieving this goal. However, at the huge contrast levels required for future space-based telescopes the vectorial nature of the well-established vector vortex phase mask becomes a limiting factor, since it imprints phase ramps of opposite signs on the two circular polarizations. An alternative polarization-independent approach is using a scalar vortex phase mask, which affects both polarizations in the same way. The achromatic performance of scalar vortex phase masks for space-based applications has still to be improved, though. Metasurfaces provide a promising approach to implement a scalar vortex phase mask with relatively simple fabrication techniques. Their demonstrated ability to implement broadband phase and amplitude masks makes them a prime candidate for achieving achromatic performance in pursuit of the 10<SUP>−10</SUP> contrast limit required by NASA's Habitable Worlds Observatory. We present a metasurface-based design of a scalar vortex phase mask providing a helical phase ramp across a large bandwidth. We first use rigorous coupled-wave analysis to create a library of square metasurface building blocks (nanoblocks) and choose an optimal set of nanoblock sizes providing broadband 2π phase coverage at a given nanoblock height. We then arrange the nanoblocks in a design providing a helical phase ramp and propagate the phase and transmission provided by the mask through a wavefront propagation software to obtain contrast curves at several wavelengths. Finally we apply electric field conjugation to dig a half-sided dark hole from 3-10 λ/D reaching 3.7 × 10<SUP>−9</SUP> contrast in 20% bandwidth.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
König, Lorenzo ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Palatnick, Skyler; University of California, Santa Barbara
Desai, Niyati; California Institute of Technology
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Millar-Blanchaer, Maxwell; University of California, Santa Barbara
Mawet, Dimitri; California Institute of Technology
Language :
English
Title :
Metasurface-based scalar vortex phase mask in pursuit of 1e-10 contrast
Publication date :
05 October 2023
Event name :
SPIE Optical Engineering + Applications
Event organizer :
SPIE
Event place :
San Diego, United States
Event date :
20-24 August 2023
Event number :
12680
Audience :
International
Main work title :
Techniques and Instrumentation for Detection of Exoplanets XI
Copyright 2023 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12680/2676174/Metasurface-based-scalar-vortex-phase-mask-in-pursuit-of-1e/10.1117/12.2676174.short
Gaudi, B. S., Seager, S., Mennesson, B., Kiessling, A., Warfield, K., Cahoy, K., Clarke, J. T., Domagal-Goldman, S., Feinberg, L., Guyon, O., et al., “The habitable exoplanet observatory (habex) mission concept study final report,” arXiv preprint , arXiv:2001.06683 (2020).
The LUVOIR Team, “The luvoir mission concept study final report,” arXiv preprint , arXiv:1912.06219 (2019).
Ruane, G., Riggs, A. E., Serabyn, E., Baxter, W., Mejia Prada, C., Mawet, D., Noyes, M., Poon, P. K., and Tabiryan, N., “Broadband vector vortex coronagraph testing at nasa’s high contrast imaging testbed facility,” in [Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave], Proc. SPIE 12180, 1218024 (2022).
Desai, N., Potier, A., Ruane, G., Riggs, A. E., Poon, P. K., Noyes, M., and Mejia Prada, C., “Experimental comparison of model-free and model-based dark hole algorithms for future space telescopes,” in [Techniques and Instrumentation for Detection of Exoplanets XI], Proc. SPIE 12680 (2023).
Swartzlander Jr, G. A., “Achromatic optical vortex lens,” Optics Letters 31(13), 2042–2044 (2006).
Ruane, G., Mawet, D., Riggs, A. E., and Serabyn, E., “Scalar vortex coronagraph mask design and predicted performance,” in [Techniques and Instrumentation for Detection of Exoplanets IX], Proc. SPIE 11117, 454–469 (2019).
Yu, N. and Capasso, F., “Flat optics with designer metasurfaces,” Nature Materials 13(2), 139–150 (2014).
Kruk, S., Ferreira, F., Mac Suibhne, N., Tsekrekos, C., Kravchenko, I., Ellis, A., Neshev, D., Turitsyn, S., and Kivshar, Y., “Transparent dielectric metasurfaces for spatial mode multiplexing,” Laser & Photonics Reviews 12(8), 1800031 (2018).
Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., and Capasso, F., “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
Devlin, R. C., Ambrosio, A., Wintz, D., Oscurato, S. L., Zhu, A. Y., Khorasaninejad, M., Oh, J., Maddalena, P., and Capasso, F., “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017).
Chong, K. E., Staude, I., James, A., Dominguez, J., Liu, S., Campione, S., Subramania, G. S., Luk, T. S., Decker, M., Neshev, D. N., Brener, I., and Kivshar, Y. S., “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Letters 15(8), 5369–5374 (2015).
Shalaev, M. I., Sun, J., Tsukernik, A., Pandey, A., Nikolskiy, K., and Litchinitser, N. M., “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Letters 15(9), 6261–6266 (2015).
Heiden, J. T. and Jang, M. S., “Design framework for polarization-insensitive multifunctional achromatic metalenses,” Nanophotonics 11(3), 583–591 (2022).
Sun, T., Hu, J., Ma, S., Xu, F., and Wang, C., “Polarization-insensitive achromatic metalens based on computational wavefront coding,” Optics Express 29(20), 31902–31914 (2021).
Li, X. and Fan, Z., “Controlling dispersion characteristic of focused vortex beam generation,” Photonics 9(3), 179 (2022).
Arbabi, A., Horie, Y., Bagheri, M., and Faraon, A., “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nature nanotechnology 10(11), 937–943 (2015).
Shrestha, S., Overvig, A. C., Lu, M., Stein, A., and Yu, N., “Broadband achromatic dielectric metalenses,” Light: Science & Applications 7(1), 85 (2018).
Chen, W. T., Park, J.-S., Marchioni, J., Millay, S., Yousef, K. M., and Capasso, F., “Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency,” Nature Communications 14(1), 2544 (2023).
Palatnick, S., König, L., Millar-Blanchaer, M., Wallace, J. K., Absil, O., Mawet, D., Desai, N., Echeverri, D., John, D., and Schuller, J., “Prospects for metasurfaces in exoplanet direct imaging systems: from principles to design,” in [Techniques and Instrumentation for Detection of Exoplanets XI], Proc. SPIE 12680 (2023).
Moharam, M. and Gaylord, T., “Rigorous coupled-wave analysis of planar-grating diffraction,” Journal of the Optical Society of America 71(7), 811–818 (1981).
Hedlund, C., Blom, H.-O., and Berg, S., “Microloading effect in reactive ion etching,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12(4), 1962–1965 (1994).
Forsberg, P. and Karlsson, M., “Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides,” Optics Express 21(3), 2693–2700 (2013).
Martinez, P., Dorrer, C., Carpentier, E. A., Kasper, M., Boccaletti, A., Dohlen, K., and Yaitskova, N., “Design, analysis, and testing of a microdot apodizer for the apodized pupil lyot coronagraph,” Astronomy & Astrophysics 495(1), 363–370 (2009).
Chung, H. and Miller, O. D., “High-na achromatic metalenses by inverse design,” Optics Express 28(5), 6945–6965 (2020).
Chen, W. T., Zhu, A. Y., and Capasso, F., “Flat optics with dispersion-engineered metasurfaces,” Nature Reviews Materials 5(8), 604–620 (2020).
Desai, N., Ruane, G., Llop-Sayson, J., Betrou-Cantou, A., Potier, A., Riggs, A. E., Serabyn, E., and Mawet, D., “Laboratory demonstration of the wrapped staircase scalar vortex coronagraph,” Journal of Astronomical Telescopes, Instruments, and Systems 9(2), 025001 (2023).
Riggs, A. E., Ruane, G., Sidick, E., Coker, C., Kern, B. D., and Shaklan, S. B., “Fast linearized coronagraph optimizer (falco) i: a software toolbox for rapid coronagraphic design and wavefront correction,” in [Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave], Proc. SPIE 10698, 878–888 (2018).
Give’on, A., Kern, B., Shaklan, S., Moody, D. C., and Pueyo, L., “Electric field conjugation-a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211, 135–20 (2007).