[en] As exoplanet direct imaging progresses towards lower planet-star contrasts and smaller, less separated planets, the need for technological improvement in imaging systems remains ever present. Metasurface optics, or arrays of subwavelength structures with highly tailorable geometry and composition on a thin substrate, have the potential to greatly advance coronagraph systems at various stages of the optical pipeline by correcting aberrations induced by other optical components and improving upon the performance of the conventional optics that are currently used. Metasurfaces can provide achromatic phase, amplitude, and/or polarization control in a compact package. Polarization insensitive phase control devices are of particular interest, because such scalar devices are less sensitive to the polarization aberrations that can negatively impact vector optics, which are currently more prevalent in coronagraph systems. Our work provides a general overview of metasurface optics and addresses the specific application of scalar-vortex (MSV) phase masks for vortex coronagraphy and vortex fiber nulling (VFN). We detail a multi-shape, variable period design process which we use to develop MSVs of various topological charge. The MSVs we developed include a J and V band charge-6, an H-band charge-2, and a K-band charge-1 MSV. The J, H, K, and V devices exhibit achromatic behavior over 15%, 12%, a 11%, and a 24% bandwidth, respectively. We also develop a multiplexed vector vortex-phase dimple metasurface for the H-band as a showcase of another way in which metasurfaces can advance direct imaging systems. We demonstrate simulated K-band MSV performance in the Keck Observatory VFN instrument with on-axis coupling below 10−3 . We detail the path to a MSV that can achieve contrasts that will enable the imaging of terrestrial planets.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Palatnick, Skyler; University of California, Santa Barbara
König, Lorenzo ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Millar-Blanchaer, Maxwell; University of California, Santa Barbara
Wallace, J. Kent; Jet Propulsion Laboratory
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Mawet, Dimitri; California Institute of Technology
Desai, Niyati; California Institute of Technology
Echeverri, Daniel; California Institute of Technology
John, Demis; University of California, Santa Barbara
Schuller, Jon A.; University of California, Santa Barbara
Language :
English
Title :
Prospects for metasurfaces in exoplanet direct imaging systems: from principles to design
Publication date :
05 October 2023
Event name :
SPIE Optical Engineering + Applications
Event organizer :
SPIE
Event place :
San Diego, United States
Event date :
20-24 August 2023
Event number :
12680
Audience :
International
Main work title :
Techniques and Instrumentation for Detection of Exoplanets XI
Copyright 2023 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12680/2677834/Prospects-for-metasurfaces-in-exoplanet-direct-imaging-systems--from/10.1117/12.2677834.short
Arbabi, A., Horie, Y., Bagheri, M., and Faraon, A., “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nature nanotechnology 10(11), 937–943 (2015).
Dong, Y., Xu, Z., Li, N., Tong, J., Fu, Y. H., Zhou, Y., Hu, T., Zhong, Q., Bliznetsov, V., Zhu, S., et al., “Si metasurface half-wave plates demonstrated on a 12-inch cmos platform,” Nanophotonics 9(1), 149–157 (2020).
Mueller, J. B., Rubin, N. A., Devlin, R. C., Groever, B., and Capasso, F., “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Physical Review Letters 118(11), 113901 (2017).
Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., and Capasso, F., “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y., Faraji-Dana, M., and Faraon, A., “Mems-tunable dielectric metasurface lens,” Nature communications 9(1), 1–9 (2018).
Bayati, E., Wolfram, A., Colburn, S., Huang, L., and Majumdar, A., “Design of achromatic augmented reality visors based on composite metasurfaces,” Applied Optics 60(4), 844–850 (2021).
Zhang, L., Chang, S., Chen, X., Ding, Y., Rahman, M. T., Duan, Y., Stephen, M., and Ni, X., “High-efficiency, 80 mm aperture metalens telescope,” Nano letters 23(1), 51–57 (2022).
Chatterjee, S., Ghosh, S. K., SureshKumar, S., Gupta, Y., and Bhattacharyya, S., “Design of metasurface-loaded filtenna for applications in radio astronomy,” in [2021 IEEE Indian Conference on Antennas and Propagation (InCAP)], 556–559, IEEE (2021).
Heiden, J. T. and Jang, M. S., “Design framework for polarization-insensitive multifunctional achromatic metalenses,” Nanophotonics 11(3), 583–591 (2022).
Chen, W. T., Zhu, A. Y., Sisler, J., Huang, Y.-W., Yousef, K. M. A., Lee, E., Qiu, C.-W., and Capasso, F., “Broadband achromatic metasurface-refractive optics,” Nano Letters 18, 7801–7808 (Dec 2018).
Ruane, G., Riggs, A. J. E., Serabyn, E., Baxter, W., Mejia Prada, C., Mawet, D., Noyes, M., Poon, P. K., and Tabiryan, N., “Broadband vector vortex coronagraph testing at NASA’s high contrast imaging testbed facility,” in [Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave], Coyle, L. E., Matsuura, S., and Perrin, M. D., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 12180, 1218024 (Aug. 2022).
Mawet, D., Serabyn, E., Liewer, K., Burruss, R., Hickey, J., and Shemo, D., “The vector vortex coronagraph: laboratory results and first light at palomar observatory,” The Astrophysical Journal 709(1), 53 (2009).
Ruane, G., Mawet, D., Riggs, A. E., and Serabyn, E., “Scalar vortex coronagraph mask design and predicted performance,” in [Techniques and Instrumentation for Detection of Exoplanets IX], 11117, 454–469, SPIE (2019).
McEldowney, S. C., Shemo, D. M., Chipman, R. A., and Smith, P. K., “Creating vortex retarders using photoaligned liquid crystal polymers,” Optics Letters 33, 134 (Jan. 2008).
Doelman, D. S., Por, E. H., Ruane, G., Escuti, M. J., and Snik, F., “Minimizing the polarization leakage of geometric-phase coronagraphs with multiple grating pattern combinations,” Publications of the Astronomical Society of the Pacific 132(1010), 045002 (2020).
Desai, N., Ruane, G., Llop-Sayson, J., Betrou-Cantou, A., Potier, A., Riggs, A. E., Serabyn, E., and Mawet, D., “Laboratory demonstration of the wrapped staircase scalar vortex coronagraph,” Journal of Astronomical Telescopes, Instruments, and Systems 9(2), 025001–025001 (2023).
Hu, J., Bandyopadhyay, S., Liu, Y.-h., and Shao, L.-y., “A review on metasurface: From principle to smart metadevices,” Frontiers in Physics 8, 502 (2021).
Li, X., Memarian, M., Dhwaj, K., and Itoh, T., “Blazed metasurface grating: The planar equivalent of a sawtooth grating,” in [2016 IEEE MTT-S International Microwave Symposium (IMS)], 1–3, IEEE (2016).
Bao, Y., Yu, Y., Xu, H., Lin, Q., Wang, Y., Li, J., Zhou, Z.-K., and Wang, X.-H., “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding,” Advanced Functional Materials 28(51), 1805306 (2018).
Cao, L., Fan, P., Barnard, E. S., Brown, A. M., and Brongersma, M. L., “Tuning the color of silicon nanostructures,” Nano letters 10(7), 2649–2654 (2010).
Jin, J., Li, X., Pu, M., Ma, X., and Luo, X., “Wavelength-dependent three-dimensional volumetric optical vortices modulation based on metasurface,” IEEE Photonics Journal 10(6), 1–8 (2018).
Sell, D., Yang, J., Doshay, S., and Fan, J. A., “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Advanced Optical Materials 5(23), 1700645 (2017).
Zhou, M., Liu, D., Belling, S. W., Cheng, H., Kats, M. A., Fan, S., Povinelli, M. L., and Yu, Z., “Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization,” ACS Photonics 8, 2265–2273 (Aug 2021).
Chen, W. T., Park, J.-S., Marchioni, J., Millay, S., Yousef, K. M., and Capasso, F., “Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency,” Nature Communications 14(1), 2544 (2023).
Yang, Y., Kang, H., Jung, C., Seong, J., Jeon, N., Kim, J., Oh, D. K., Park, J., Kim, H., and Rho, J., “Revisiting optical material platforms for efficient linear and nonlinear dielectric metasurfaces in the ultraviolet, visible, and infrared,” ACS Photonics 10(2), 307–321 (2023).
Choudhury, S. M., Wang, D., Chaudhuri, K., DeVault, C., Kildishev, A. V., Boltasseva, A., and Shalaev, V. M., “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261–272 (2020).
Persson, P.-O. and Strang, G., “A simple mesh generator in matlab,” SIAM review 46(2), 329–345 (2004).
Por, E. H., Haffert, S. Y., Radhakrishnan, V. M., Doelman, D. S., van Kooten, M., and Bos, S. P., “High contrast imaging for python (hcipy): an open-source adaptive optics and coronagraph simulator,” in [Adaptive Optics Systems VI], 10703, 1112–1125, SPIE (2018).
Mao, N., Tang, Y., Jin, M., Zhang, G., Li, Y., Zhang, X., Hu, Z., Tang, W., Chen, Y., Liu, X., et al., “Nonlinear wavefront engineering with metasurface decorated quartz crystal,” Nanophotonics 11(4), 797–803 (2021).
Wang, X., Shi, F., and Wallace, J. K., “Zernike wavefront sensor (zwfs) development for low order wavefront sensing (lowfs),” in [Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave], 9904, 1881–1889, SPIE (2016).
Sauvage, J.-F., Fusco, T., Rousset, G., and Petit, C., “Calibration and precompensation of noncommon path aberrations for extreme adaptive optics,” JOSA A 24(8), 2334–2346 (2007).
Echeverri, D., Ruane, G., Calvin, B., Jovanovic, N., Delorme, J.-R., Wang, J., Millar-Blanchaer, M., Mawet, D., Serabyn, E., Wallace, J. K., et al., “Detecting and characterizing close-in exoplanets with vortex fiber nulling,” in [Optical and Infrared Interferometry and Imaging VII], 11446, 317–328, SPIE (2020).
Delacroix, C., Absil, O., Carlomagno, B., Piron, P., Forsberg, P., Karlsson, M., Mawet, D., and Surdej, J., “Development of a subwavelength grating vortex coronagraph of topological charge 4 (sgvc4)(2014) proc,” in [SPIE], 9147, 8.
König, L., Palatnick, S., Desai, N., Absil, O., and Mawet, D., “A metasurface based scalar vortex phase mask design,” in [Techniques and Instrumentation for Detection of Exoplanets XI], 12680, SPIE (2023).
Galicher, R., Huby, E., Baudoz, P., and Dupuis, O., “A family of phase masks for broadband coronagraphy example of the wrapped vortex phase mask theory and laboratory demonstration,” Astronomy & Astrophysics 635, A11 (2020).
Desai, N., Llop-Sayson, J., Bertrou-Cantou, A., Ruane, G., Eldorado Riggs, A. J., Serabyn, E., and Mawet, D., “Topological designs for scalar vortex coronagraphs,” in [Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave], Coyle, L. E., Matsuura, S., and Perrin, M. D., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 12180, 121805H (Aug. 2022).
Desai, N., Llop-Sayson, J., Bertrou-Cantou, A., Ruane, G., Riggs, A. E., Serabyn, E., and Mawet, D., “Achromatizing scalar vortex coronagraphs with radial phase mask dimples,” in [Techniques and Instrumentation for Detection of Exoplanets XI], 12680, 8, SPIE (2023).