[en] The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10<SUP>−10</SUP> contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Desai, Niyati; California Institute of Technology
König, Lorenzo ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Por, Emiel; Space Telescope Science Institute, Baltimore, Maryland
Juanola-Parramon, Roser; NASA Goddard Space Flight Center, Maryland
Belikov, Ruslan; NASA Ames Research Center
Laginja, Iva; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Guyon, Olivier; University of Arizona
Pueyo, Laurent; Space Telescope Science Institute, Baltimore, Maryland
Fogarty, Kevin; NASA Ames Research Center
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Copyright 2023 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12680/2677210/Integrated-photonic-based-coronagraphic-systems-for-future-space-telescopes/10.1117/12.2677210.short
National Academies of Sciences, E. and Medicine, “Pathways to discovery in astronomy and astrophysics for the 2020s,” The National Academies Press, Washington, DC (2021).
Stark, C. C., Belikov, R., Bolcar, M. R., Cady, E., Crill, B. P., Ertel, S., Groff, T., Hildebrandt, S., Krist, J., Lisman, P. D., et al., “Exoearth yield landscape for future direct imaging space telescopes,” Journal of Astronomical Telescopes, Instruments, and Systems 5(2), 024009–024009 (2019).
The LUVOIR Team, “The luvoir mission concept study final report,” arXiv preprint , arXiv:1912.06219 (2019).
Gaudi, B. S., Seager, S., Mennesson, B., Kiessling, A., Warfield, K., Cahoy, K., Clarke, J. T., Domagal-Goldman, S., Feinberg, L., Guyon, O., et al., “The habitable exoplanet observatory (habex) mission concept study final report,” arXiv preprint , arXiv:2001.06683 (2020).
Belikov, R., Sirbu, D., Jewell, J. B., Guyon, O., and Stark, C. C., “Theoretical performance limits for coronagraphs on obstructed and unobstructed apertures: how much can current designs be improved?,” in [Techniques and Instrumentation for Detection of Exoplanets X], Shaklan, S. B. and Ruane, G. J., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 11823, 118230W (Sept. 2021).
Mawet, D., Milli, J., Wahhaj, Z., Pelat, D., Absil, O., Delacroix, C., Boccaletti, A., Kasper, M., Kenworthy, M., Marois, C., Mennesson, B., and Pueyo, L., “Fundamental Limitations of High Contrast Imaging Set by Small Sample Statistics,” Astrophysical Journal 792, 97 (Sept. 2014).
Vaughan, S. R., Gebhard, T. D., Bott, K., Casewell, S. L., Cowan, N. B., Doelman, D. S., Kenworthy, M., Mazoyer, J., Millar-Blanchaer, M. A., Trees, V. J., et al., “Chasing rainbows and ocean glints: Inner working angle constraints for the habitable worlds observatory,” Monthly Notices of the Royal Astronomical Society , stad2127 (2023).
Miller, D. A., “Self-configuring universal linear optical component,” Photonics Research 1(1), 1–15 (2013).
Jovanovic, N., Gatkine, P., Anugu, N., Amezcua-Correa, R., Basu Thakur, R., Beichman, C., Bender, C., Berger, J.-P., Bigioli, A., Bland-Hawthorn, J., Bourdarot, G., Bradford, C. M., Broeke, R., Bryant, J., Bundy, K., Cheriton, R., Cvetojevic, N., Diab, M., Diddams, S. A., Dinkelaker, A. N., Duis, J., Eikenberry, S., Ellis, S., Endo, A., Figer, D. F., Fitzgerald, M., Gris-Sanchez, I., Gross, S., Grossard, L., Guyon, O., Haffert, S. Y., Halverson, S., Harris, R. J., He, J., Herr, T., Hottinger, P., Huby, E., Ireland, M., Jenson-Clem, R., Jewell, J., Jocou, L., Kraus, S., Labadie, L., Lacour, S., Laugier, R., Ławniczuk, K., Lin, J., Leifer, S., Leon-Saval, S., Martin, G., Martinache, F., Martinod, M.-A., Mazin, B., Minardi, S., Monnier, J. D., Moreira, R., Mourard, D., Nayak, A. S. S., Norris, B., Obrzud, E., Perraut, K., Reynaud, F., Sallum, S., Schiminovich, D., Schwab, C., Serbayn, E., Soliman, S., Stoll, A., Tang, L., Tuthill, P., Vahala, K., Vasisht, G., Veilleux, S., Walter, A. B., Wollack, E. J., Xin, Y., Yang, Z., Yerolatsitis, S., Zhang, Y., and Zou, C.-L., “2023 astrophotonics roadmap: pathways to realizing multi-functional integrated astrophotonic instruments,” Journal of Physics: Photonics (2023).
Cvetojevic, N., Martinache, F., Chingaipe, P., Laugier, R., Ławniczuk, K., Broeke, R. G., Ligi, R., N’Diaye, M., and Mary, D., “3-beam self-calibrated kernel nulling photonic interferometer,” (2022).
Chingaipe, P. M., Martinache, F., and Cvetojevic, N., “Four-input photonic kernel-nulling for the VLTI,” in [Optical and Infrared Interferometry and Imaging VIII], Mérand, A., Sallum, S., and Sanchez-Bermudez, J., eds., 12183, 1218319, International Society for Optics and Photonics, SPIE (2022).
Benisty, M., Berger, J.-P., Jocou, L., Labeye, P., Malbet, F., Perraut, K., and Kern, P., “An integrated optics beam combiner for the second generation vlti instruments,” A&A 498(2), 601–613 (2009).
Jovanovic, N., Schwab, C., Guyon, O., Lozi, J., Cvetojevic, N., Martinache, F., Leon-Saval, S., Norris, B., Gross, S., Doughty, D., Currie, T., and Takato, N., “Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy,” A&A 604, A122 (2017).
Leon-Saval, S. G., Birks, T. A., Bland-Hawthorn, J., and Englund, M., “Multimode fiber devices with single-mode performance,” Opt. Lett. 30, 2545–2547 (Oct 2005).
Stoll, A., Madhav, K., and Roth, M., “Design, simulation and characterization of integrated photonic spectrographs for astronomy ii: low-aberration generation-ii awg devices with three stigmatic points,” Opt. Express 29, 36226–36241 (Oct 2021).
Gatkine, P., Veilleux, S., and Dagenais, M., “Astrophotonic spectrographs,” Applied Sciences 9(2) (2019).
Juanola-Parramon, R., Zimmerman, N. T., Pueyo, L., Bolcar, M., Gong, Q., Groff, T., Krist, J., Roberge, A., Ruane, G., and Stark, C., “Modeling and performance analysis of the luvoir coronagraph instrument,” Journal of Astronomical Telescopes, Instruments, and Systems 8(3), 034001–034001 (2022).