Article (Scientific journals)
Photonic-structure optimization using highly data-efficient deep learning: Application to nanofin and annular-groove phase masks
Roy, Nicolas; König, Lorenzo; Absil, Olivier et al.
2024In Physical Review. A, 109 (1), p. 0135514
Peer Reviewed verified by ORBi
 

Files


Full Text
Roy24_AGPM_photonic_structure_optimization_data_efficient_DL.pdf
Publisher postprint (18.38 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin-film optics. Specifically, the polarization of light can be effectively controlled through the use of thin phase plates. This study aims to introduce a surrogate optimization framework for these devices. The framework is applied to develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging. Computational intelligence techniques are exploited to optimize the geometric features of these devices. The large design space and computational limitations necessitate the use of surrogate models like partial least-squares kriging, radial basis functions, or neural networks. However, we demonstrate the inadequacy of these methods in modeling the performance of VPMs. To address the shortcomings of these methods, a data-efficient evolutionary optimization setup using a deep neural network as a highly accurate and efficient surrogate model is proposed. The optimization process in this study employs a robust particle swarm evolutionary optimization scheme, which operates on explicit geometric parameters of the photonic device. Through this approach, optimal designs are developed for two design candidates. In the most complex case, evolutionary optimization enables optimization of the design that would otherwise be impractical (requiring too many simulations). In both cases, the surrogate model improves the reliability and efficiency of the procedure, effectively reducing the required number of simulations by up to 75% compared to conventional optimization techniques.
Research center :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège [BE]
Disciplines :
Physics
Author, co-author :
Roy, Nicolas 
König, Lorenzo ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Beauthier, Charlotte 
Mayer, Alexandre 
Lobet, Michaël 
Language :
English
Title :
Photonic-structure optimization using highly data-efficient deep learning: Application to nanofin and annular-groove phase masks
Publication date :
23 January 2024
Journal title :
Physical Review. A
ISSN :
2469-9926
eISSN :
2469-9934
Publisher :
American Physical Society (APS)
Volume :
109
Issue :
1
Pages :
0135514
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
UNamur - Université de Namur [BE]
Union Européenne [BE]
Available on ORBi :
since 24 January 2024

Statistics


Number of views
2 (0 by ULiège)
Number of downloads
5 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBi