[en] WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M<SUB>⊕</SUB> and Jupiter-like radius of about 0.94 R<SUB>J</SUB> (refs. <SUP>1,2</SUP>), whose extended atmosphere is eroding<SUP>3</SUP>. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. <SUP>4,5</SUP>). Recently, photochemically produced sulfur dioxide (SO<SUB>2</SUB>) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 μm (refs. <SUP>6,7</SUP>), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO<SUB>2</SUB> (refs. <SUP>8-10</SUP>). Here we report the 9σ detection of two fundamental vibration bands of SO<SUB>2</SUB>, at 7.35 μm and 8.69 μm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Dyrek, Achrène ✱; Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France
Min, Michiel ✱; Netherlands Institute for Space Research
Decin, Leen ✱; Katholieke University of Leuven, Astronomical Institute
Bouwman, Jeroen; Max-Planck-Institute for Astronomy, Heidelberg
Crouzet, Nicolas; Leiden Observatory
Mollière, Paul; Max-Planck-Institute for Astronomy, Heidelberg
Lagage, Pierre-Olivier; CEA Saclay, Service d'Astrophysique
Konings, Thomas; Katholieke University of Leuven, Astronomical Institute
Tremblin, Pascal; Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, Gif-sur-Yvette, France
Güdel, Manuel; Max-Planck-Institute for Astronomy, Heidelberg, University of Vienna, Department of Astronomy, ETH Zurich, Department of Physics
Pye, John; Space Research Centre, School of Physics &, Astronomy, University of Leicester, Leicester, UK
Waters, Rens; Netherlands Institute for Space Research, Radboud University Nijmegen, Department of Astronomy and Physics, -
Henning, Thomas; Max-Planck-Institute for Astronomy, Heidelberg
Vandenbussche, Bart; Katholieke University of Leuven, Astronomical Institute
Ardevol Martinez, Francisco; Netherlands Institute for Space Research, University of Groningen, Kapteyn Astronomical Institute, University of Edinburgh, Centre for Astrobiology, University of Edinburgh, School of Geosciences
Argyriou, Ioannis; Katholieke University of Leuven, Astronomical Institute
Ducrot, Elsa; CEA Saclay, Service d'Astrophysique
Heinke, Linus; Katholieke University of Leuven, Astronomical Institute, University of Edinburgh, Centre for Astrobiology, University of Edinburgh, School of Geosciences
van Looveren, Gwenael; University of Vienna, Department of Astronomy
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Barrado, David; Center for Astrobiology, Madrid
Baudoz, Pierre; LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université, Meudon, France
Boccaletti, Anthony; LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université, Meudon, France
Cossou, Christophe; Département d'Electronique des Détecteurs et d'Informatique pour la Physique, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
Coulais, Alain; CEA Saclay, Service d'Astrophysique, Laboratoire d'Etudes du Rayonnement de la Matiere en Astrophysique
Edwards, Billy; Netherlands Institute for Space Research
Gastaud, René; Département d'Electronique des Détecteurs et d'Informatique pour la Physique, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
Glasse, Alistair; Royal Observatory Edinburgh
Glauser, Adrian; ETH Zurich, Department of Physics
Greene, Thomas P.; Space Science and Astrobiology Division, NASA's Ames Research Center, Moffett Field, CA, USA
Kendrew, Sarah; Space Telescope Science Institute, ESA Office, Baltimore, Maryland
Krause, Oliver; Max-Planck-Institute for Astronomy, Heidelberg
Lahuis, Fred; Netherlands Institute for Space Research
Mueller, Michael; University of Groningen, Kapteyn Astronomical Institute
Olofsson, Goran; AlbaNova University Center
Patapis, Polychronis; ETH Zurich, Department of Physics
Rouan, Daniel; Center for Astrobiology, Madrid
Royer, Pierre; Katholieke University of Leuven, Astronomical Institute
Scheithauer, Silvia; Max-Planck-Institute for Astronomy, Heidelberg
Waldmann, Ingo; University College London, Department of Physics and Astronomy
Whiteford, Niall; American Museum of Natural History, New York
Colina, Luis; Center for Astrobiology, Madrid
van Dishoeck, Ewine F.; Leiden Observatory
Östlin, Göran; Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France, Department of Astronomy, Oskar Klein Centre, Stockholm University, Stockholm, Sweden
Ray, Tom P.; Dublin Institute for Advanced Studies, School of Cosmic Physics
Anderson, D. R. et al. The discoveries of WASP-91b, WASP-105b and WASP-107b: two warm Jupiters and a planet in the transition region between ice giants and gas giants. Astron. Astrophys. 604, A110 (2017). DOI: 10.1051/0004-6361/201730439
Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J. 161, 70 (2021). DOI: 10.3847/1538-3881/abcd3c
Spake, J. J. et al. Helium in the eroding atmosphere of an exoplanet. Nature 557, 68–70 (2018). DOI: 10.1038/s41586-018-0067-5
Kreidberg, L. et al. Water, high-altitude condensates, and possible methane depletion in the atmosphere of the warm super-Neptune WASP-107b. Astrophys. J. 858, L6 (2018). DOI: 10.3847/2041-8213/aabfce
Edwards, B. et al. Exploring the ability of Hubble Space Telescope WFC3 G141 to uncover trends in populations of exoplanet atmospheres through a homogeneous transmission survey of 70 gaseous planets. Astrophys. J. 269, 31 (2023). DOI: 10.3847/1538-4365/ac9f1a
Rustamkulov, Z. et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659–663 (2023). DOI: 10.1038/s41586-022-05677-y
Alderson, L. et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H. Nature 614, 664–669 (2023). DOI: 10.1038/s41586-022-05591-3
Zahnle, K. et al. Photolytic hazes in the atmosphere of 51 Eri b. Astrophys. J. 824, 137 (2016). DOI: 10.3847/0004-637X/824/2/137
Tsai, S. M. et al. A comparative study of atmospheric chemistry with VULCAN. Astrophys. J. 923, 264 (2021). DOI: 10.3847/1538-4357/ac29bc
Tsai, S. M. et al. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 617, 483–487 (2023). DOI: 10.1038/s41586-023-05902-2
Bouwman, J. et al. Spectroscopic time series performance of the Mid-infrared Instrument on the JWST. Publ. Astron. Soc. Pac. 135, 038002 (2023). DOI: 10.1088/1538-3873/acbc49
Bell, T. J. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022). DOI: 10.21105/joss.04503
Min, M. et al. The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval. Astron. Astrophys. 642, A28 (2020). DOI: 10.1051/0004-6361/201937377
Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019). DOI: 10.1051/0004-6361/201935470
Herzberg, G. Molecular Spectra and Molecular Structure. Vol. 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, 1966).
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astrophys. J. 661, A80 (2022).
Polman, J. et al. H2S and SO2 detectability in hot Jupiters. Sulphur species as indicators of metallicity and C/O ratio. Astron. Astrophys. 670, A161 (2023). DOI: 10.1051/0004-6361/202244647
Madhusudhan, N. C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012). DOI: 10.1088/0004-637X/758/1/36
Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019). DOI: 10.1038/s41550-019-0800-5
Cooper, C. S. & Showman, P. Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006). DOI: 10.1086/506312
Showman, A. P. et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009). DOI: 10.1088/0004-637X/699/1/564
Drummond, B. et al. Implications of three-dimensional chemical transport in hot Jupiter atmospheres: results from a consistently coupled chemistry-radiation-hydrodynamics model. Astron. Astrophys. 636, A68 (2020). DOI: 10.1051/0004-6361/201937153
Showman, A. P. & Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002). DOI: 10.1051/0004-6361:20020101
Sainsbury-Martinez, F. et al. Idealised simulations of the deep atmosphere of hot Jupiters. Deep, hot adiabats as a robust solution to the radius inflation problem. Astron. Astrophys. 632, A114 (2019). DOI: 10.1051/0004-6361/201936445
Sarkis, P. et al. Evidence of three mechanisms explaining the radius anomaly of hot Jupiters. Astron. Astrophys. 645, A79 (2021). DOI: 10.1051/0004-6361/202038361
Schneider, A. D. et al. No evidence for radius inflation in hot Jupiters from vertical advection of heat. Astron. Astrophys. 666, L11 (2022). DOI: 10.1051/0004-6361/202244797
Baraffe, I., Chabrier, G. & Barman, T. The physical properties of extra-solar planets. Rep. Prog. Phys. 73, 016901 (2010). DOI: 10.1088/0034-4885/73/1/016901
Seager, S., Whitney, B. A. & Sasselov, D. D. Photometric light curves and polarization of close-in extrasolar giant planets. Astrophys. J. 540, 504–520 (2000). DOI: 10.1086/309292
Richardson, L. et al. A spectrum of an extrasolar planet. Nature 445, 892–895 (2007). DOI: 10.1038/nature05636
Miles, B. E. et al. The JWST Early-release Science Program for direct observations of exoplanetary systems II: a 1 to 20 μm spectrum of the planetary-mass companion VHS 1256-1257 b. Astrophys. J. Lett. 946, L6 (2023). DOI: 10.3847/2041-8213/acb04a
Nuth, J. A. & Ferguson, F. T. Silicates do nucleate in oxygen-rich circumstellar outflows: new vapor pressure data for SiO. Astrophys. J. 649, 1178–1183 (2006). DOI: 10.1086/506264
Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010). DOI: 10.1051/0004-6361/200913396
Arnaud, K. A. XSPEC: the first ten years. Astron. Soc. Pac. 101, 17 (1996).
Loyd, R. O. P. et al. The MUSCLES Treasury Survey. III. X-ray to infrared spectra of 11 M and K stars hosting planets. Astrophys. J. 824, 102 (2016). DOI: 10.3847/0004-637X/824/2/102