Large Interferometer For Exoplanets (LIFE). X. Detectability of currently known exoplanets and synergies with future IR/O/UV reflected-starlight imaging missions
catalogs; planets and satellites: detection; planets and satellites:; fundamental parameters; planets and satellites: terrestrial planets; planets and satellites: gaseous planets; techniques: high angular resolution
Abstract :
[en] Context. The next generation of space-based observatories will characterize the atmospheres of low-mass, temperate exoplanets with the direct-imaging technique. This will be a major step forward in our understanding of exoplanet diversity and the prevalence of potentially habitable conditions beyond the Earth. <BR /> Aims: We compute a list of currently known exoplanets detectable with the mid-infrared Large Interferometer For Exoplanets (LIFE) in thermal emission. We also compute the list of known exoplanets accessible to a notional design of the future Habitable Worlds Observatory (HWO), observing in reflected starlight. <BR /> Methods: With a pre-existing statistical methodology, we processed the NASA Exoplanet Archive and computed orbital realizations for each known exoplanet. We derived their mass, radius, equilibrium temperature, and planet-star angular separation. We used the LIFEsim simulator to compute the integration time (t<SUB>int</SUB>) required to detect each planet with LIFE. A planet is considered detectable if a broadband signal-to-noise ratio S/N = 7 is achieved over the spectral range 4-18.5 µm in t<SUB>int</SUB> < 100 h. We tested whether the planet is accessible to HWO in reflected starlight based on its notional inner and outer working angles, and minimum planet-to-star contrast. <BR /> Results: LIFE's reference configuration (four 2-m telescopes with 5% throughput and a nulling baseline between 10-100 m) can detect 212 known exoplanets within 20 pc. Of these, 49 are also accessible to HWO in reflected starlight, offering a unique opportunity for synergies in atmospheric characterization. LIFE can also detect 32 known transiting exoplanets. Furthermore, we find 38 LIFE-detectable planets orbiting in the habitable zone, of which 13 have M<SUB>p</SUB> < 5M<SUB>⊕</SUB> and eight have 5M<SUB>⊕</SUB> < M<SUB>p</SUB> < 10M<SUB>⊕</SUB>. <BR /> Conclusions: LIFE already has enough targets to perform ground-breaking analyses of low-mass, habitable-zone exoplanets, a fraction of which will also be accessible to other instruments. <P />Table G.1 is available at the CDS via anonymous ftp to <A href="https://cdsarc.cds.unistra.fr">cdsarc.cds.unistra.fr</A> (ftp://130.79.128.5) or via <A href="https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A96">https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A96</A>
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Carrión-González, Óscar; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Kammerer, Jens; Space Telescope Science Institute, Baltimore, Maryland
Angerhausen, Daniel; ETH Zurich, Department of Physics, -
Dannert, Felix; ETH Zurich, Department of Physics
García Muñoz, Antonio; CEA Saclay, Service d'Astrophysique
Quanz, Sascha P.; ETH Zurich, Department of Physics, -
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Beichman, Charles A.; NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
Girard, Julien H.; Space Telescope Science Institute, Baltimore, Maryland
Mennesson, Bertrand; Jet Propulsion Laboratory
Meyer, Michael R.; University of Michigan, Department of Astronomy
Large Interferometer For Exoplanets (LIFE). X. Detectability of currently known exoplanets and synergies with future IR/O/UV reflected-starlight imaging missions
Misra, A., Meadows, V., & Crisp, D. 2014, ApJ, 792, 61
National Academies of Sciences Engineering and Medicine. 2021, Pathways to Discovery in Astronomy and Astrophysics for the 2020s (Washington, DC: The National Academies Press)
Nayak, M., Lupu, R., Marley, M. S., et al. 2017, PASP, 129, 034401
Noack, L., Kislyakova, K. G., Johnstone, C. P., Güdel, M., & Fossati, L. 2021, A&A, 651, A103
Otegi, J. F., Bouchy, F., & Helled, R. 2020, A&A, 634, A43
Pepe, F., Cristiani, S., Rebolo, R., et al. 2021, A&A, 645, A96
Pozuelos, F. J., Suárez, J. C., de Elía, G. C., et al. 2020, A&A, 641, A23
Quanz, S. P., Crossfield, I., Meyer, M. R., Schmalzl, E., & Held, J. 2015, Int. J. Astrobiol., 14, 279
Quanz, S. P., Kammerer, J., Defrère, D., et al. 2018, SPIE Conf. Ser., 10701, 107011I
Quanz, S. P., Absil, O., Benz, W., et al. 2022a, Exp. Astron., 54, 1197
Quanz, S. P., Ottiger, M., Fontanet, E., et al. 2022b, A&A, 664, A21
Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2014, SPIE Conf. Ser., 9147, 91471F
Rauer, H., Gebauer, S., Paris, P. V., et al. 2011, A&A, 529, A8