[en] The evolution of innate behaviours is ultimately due to genetic variation likely acting in the nervous system. Gene regulation may be particularly important because it can evolve in a modular brain-region specific fashion through the concerted action of cis- and trans-regulatory changes. Here, to investigate transcriptional variation and its regulatory basis across the brain, we perform RNA sequencing (RNA-Seq) on ten brain subregions in two sister species of deer mice (Peromyscus maniculatus and P. polionotus)-which differ in a range of innate behaviours, including their social system-and their F1 hybrids. We find that most of the variation in gene expression distinguishes subregions, followed by species. Interspecific differential expression (DE) is pervasive (52-59% of expressed genes), whereas the number of DE genes between sexes is modest overall (~3%). Interestingly, the identity of DE genes varies considerably across brain regions. Much of this modularity is due to cis-regulatory divergence, and while 43% of genes were consistently assigned to the same gene regulatory class across subregions (e.g. conserved, cis- or trans-regulatory divergence), a similar number were assigned to two or more different gene regulatory classes. Together, these results highlight the modularity of gene expression differences and divergence in the brain, which may be key to explain how the evolution of brain gene expression can contribute to the astonishing diversity of animal behaviours.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Kautt, Andreas F ; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Chen, Jenny; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Lewarch, Caitlin L; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Hu, Caroline; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Turner, Kyle; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Lassance, Jean-Marc ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Baier, Felix; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Bedford, Nicole L; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Bendesky, Andres ; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Hoekstra, Hopi E; Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
Language :
English
Title :
Evolution of gene expression across brain regions in behaviourally divergent deer mice.
Alaux, C., Sinha, S., Hasadsri, L., Hunt, G. J., Guzmán-Novoa, E., DeGrandi-Hoffman, G., Uribe-Rubio, J. L., Southey, B. R., Rodriguez-Zas, S., & Robinson, G. E. (2009). Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Sciences, 106(36), 15400–15405. https://doi.org/10.1073/pnas.0907043106
Barrett, C. E., Keebaugh, A. C., Ahern, T. H., Bass, C. E., Terwilliger, E. F., & Young, L. J. (2013). Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles. Hormones and Behavior, 63(3), 518–526. https://doi.org/10.1016/j.yhbeh.2013.01.005
Bedford, N. L., & Hoekstra, H. E. (2015). The natural history of model organisms: Peromyscus mice as a model for studying natural variation. eLife. https://doi.org/10.7554/eLife.06813
Bendesky, A., Kwon, Y.-M., Lassance, J.-M., Lewarch, C. L., Yao, S., Peterson, B. K., He, M. X., Dulac, C., & Hoekstra, H. E. (2017). The genetic basis of parental care evolution in monogamous mice. Nature, 544(7651), 434–439. https://doi.org/10.1038/nature22074
Benowitz, K. M., Coleman, J. M., Allan, C. W., & Matzkin, L. M. (2020). Contributions of cis- and trans-regulatory evolution to transcriptomic divergence across populations in the Drosophila mojavensis larval brain. Genome Biology and Evolution, 12(8), 1407–1418. https://doi.org/10.1093/gbe/evaa145
Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csárdi, G., Harrigan, P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., Albert, F. W., Zeller, U., Khaitovich, P., Grützner, F., Bergmann, S., Nielsen, R., Pääbo, S., & Kaessmann, H. (2011). The evolution of gene expression levels in mammalian organs. Nature, 478(7369), 343–348. https://doi.org/10.1038/nature10532
Clark, F. H. (1938). Age of sexual maturity in mice of the genus Peromyscus. Journal of Mammalogy, 19(2), 230–234. https://doi.org/10.2307/1374620
Dawson, W. D., Lake, C. E., & Schumpert, S. S. (1988). Inheritance of burrow building in Peromyscus. Behavior Genetics, 18(3), 371–382. https://doi.org/10.1007/BF01260937
Dewey, M. J., & Dawson, W. D. (2001). Deer mice: The Drosophila of North American mammalogy. Genesis, 29(3), 105–109. https://doi.org/10.1002/gene.1011
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635
Duboué, E. R., Keene, A. C., & Borowsky, R. L. (2011). Evolutionary convergence on sleep loss in cavefish populations. Current Biology, 21(8), 671–676. https://doi.org/10.1016/j.cub.2011.03.020
Fiddes, I. T., Armstrong, J., Diekhans, M., Nachtweide, S., Kronenberg, Z. N., Underwood, J. G., Gordon, D., Earl, D., Keane, T., Eichler, E. E., Haussler, D., Stanke, M., & Paten, B. (2018). Comparative annotation toolkit (CAT)—Simultaneous clade and personal genome annotation. Genome Research, 28(7), 1029–1038. https://doi.org/10.1101/gr.233460.117
Foltz, D. W. (1981). Genetic evidence for long-term monogamy in a small rodent, Peromyscus polionotus. The American Naturalist, 117(5), 665–675. https://doi.org/10.1086/283751
Fraser, H. B., Moses, A. M., & Schadt, E. E. (2010). Evidence for widespread adaptive evolution of gene expression in budding yeast. Proceedings of the National Academy of Sciences, 107(7), 2977–2982. https://doi.org/10.1073/pnas.0912245107
Gibson, G., Riley-Berger, R., Harshman, L., Kopp, A., Vacha, S., Nuzhdin, S., & Wayne, M. (2004). Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics, 167(4), 1791–1799. https://doi.org/10.1534/genetics.104.026583
Goncalves, A., Leigh-Brown, S., Thybert, D., Stefflova, K., Turro, E., Flicek, P., Brazma, A., Odom, D. T., & Marioni, J. C. (2012). Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome Research, 22(12), 2376–2384. https://doi.org/10.1101/gr.142281.112
Hu, C. K., York, R. A., Metz, H. C., Bedford, N. L., Fraser, H. B., & Hoekstra, H. E. (2022). Cis-regulatory changes in locomotor genes are associated with the evolution of burrowing behavior. Cell Reports, 38(7), 110360. https://doi.org/10.1016/j.celrep.2022.110360
Jiang, D., & Zhang, J. (2019). Parallel transcriptomic changes in the origins of divergent monogamous vertebrates? Proceedings of the National Academy of Sciences, 116(36), 17627–17628. https://doi.org/10.1073/pnas.1910749116
Jourjine, N., Woolfolk, M. L., Sanguinetti-Scheck, J. I., Sabatini, J. E., McFadden, S., Lindholm, A. K., & Hoekstra, H. E. (2023). Two pup vocalization types are genetically and functionally separable in deer mice. Current Biology, 33(7), 1237–1248.e4. https://doi.org/10.1016/j.cub.2023.02.045
Kim, D.-W., Yao, Z., Graybuck, L. T., Kim, T. K., Nguyen, T. N., Smith, K. A., Fong, O., Yi, L., Koulena, N., Pierson, N., Shah, S., Lo, L., Pool, A.-H., Oka, Y., Pachter, L., Cai, L., Tasic, B., Zeng, H., & Anderson, D. J. (2019). Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell, 179(3), 713–728.e17. https://doi.org/10.1016/j.cell.2019.09.020
Krijthe, J. H. (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut Implementation [Computer software]. https://github.com/jkrijthe/Rtsne
Landry, C. R., Wittkopp, P. J., Taubes, C. H., Ranz, J. M., Clark, A. G., & Hartl, D. L. (2005). Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of drosophila. Genetics, 171(4), 1813–1822. https://doi.org/10.1534/genetics.105.047449
Leclercq, J., Torres-Paz, J., Policarpo, M., Agnès, F., & Rétaux, S. (2022). Evolution of the regulation of developmental gene expression in blind Mexican cavefish. bioRxiv. https://doi.org/10.1101/2022.07.12.499770
Lewarch, C. L., & Hoekstra, H. E. (2018). The evolution of nesting behaviour in Peromyscus mice. Animal Behaviour, 139, 103–115. https://doi.org/10.1016/j.anbehav.2018.03.008
Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/s13059-014-0550-8
Lu, L., Airey, D. C., & Williams, R. W. (2001). Complex trait analysis of the hippocampus: Mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. Journal of Neuroscience, 21(10), 3503–3514. https://doi.org/10.1523/JNEUROSCI.21-10-03503.2001
Markow, T. A., & O'Grady, P. (2008). Reproductive ecology of drosophila. Functional Ecology, 22(5), 747–759. https://doi.org/10.1111/j.1365-2435.2008.01457.x
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17, 10–12. https://doi.org/10.14806/ej.17.1.200
McGirr, J. A., & Martin, C. H. (2019). Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. PLoS One, 14(7), e0218899. https://doi.org/10.1371/journal.pone.0218899
McManus, C. J., Coolon, J. D., Duff, M. O., Eipper-Mains, J., Graveley, B. R., & Wittkopp, P. J. (2010). Regulatory divergence in drosophila revealed by mRNA-seq. Genome Research, 20(6), 816–825. https://doi.org/10.1101/gr.102491.109
Merkin, J., Russell, C., Chen, P., & Burge, C. B. (2012). Evolutionary dynamics of gene and Isoform regulation in mammalian tissues. Science, 338(6114), 1593–1599. https://doi.org/10.1126/science.1228186
Nadler, J. J., Zou, F., Huang, H., Moy, S. S., Lauder, J., Crawley, J. N., Threadgill, D. W., Wright, F. A., & Magnuson, T. R. (2006). Large-scale gene expression differences across brain regions and inbred strains correlate with a behavioral phenotype. Genetics, 174(3), 1229–1236. https://doi.org/10.1534/genetics.106.061481
Naqvi, S., Godfrey, A. K., Hughes, J. F., Goodheart, M. L., Mitchell, R. N., & Page, D. C. (2019). Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science, 365(6450), aaw7317. https://doi.org/10.1126/science.aaw7317
Orr, H. A. (1998). Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics, 149(4), 2099–2104.
Perez, J. D., Rubinstein, N. D., Fernandez, D. E., Santoro, S. W., Needleman, L. A., Ho-Shing, O., Choi, J. J., Zirlinger, M., Chen, S.-K., Liu, J. S., & Dulac, C. (2015). Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. eLife, 4, e07860. https://doi.org/10.7554/eLife.07860
Pizzollo, J., Zintel, T. M., & Babbitt, C. C. (2022). Differentially active and conserved neural enhancers define two forms of adaptive noncoding evolution in humans. Genome Biology and Evolution, 14(8), evac108. https://doi.org/10.1093/gbe/evac108
Ray, S., Tzeng, R.-Y., DiCarlo, L. M., Bundy, J. L., Vied, C., Tyson, G., Nowakowski, R., & Arbeitman, M. N. (2016). An examination of dynamic gene expression changes in the mouse brain during pregnancy and the postpartum period. G3: Genes, Genomes, Genetics, 6(1), 221–233. https://doi.org/10.1534/g3.115.020982
Reuveni, E., Getselter, D., Oron, O., & Elliott, E. (2018). Differential contribution of cis and trans gene transcription regulatory mechanisms in amygdala and prefrontal cortex and modulation by social stress. Scientific Reports, 8(1), 6339. https://doi.org/10.1038/s41598-018-24544-3
Schenk, J. J., Rowe, K. C., & Steppan, S. J. (2013). Ecological opportunity and incumbency in the diversification of repeated continental Colonizations by Muroid rodents. Systematic Biology, 62(6), 837–864. https://doi.org/10.1093/sysbio/syt050
Shen, S. Q., Turro, E., & Corbo, J. C. (2014). Hybrid mice reveal parent-of-origin and cis- and trans-regulatory effects in the retina. PLoS One, 9(10), e109382. https://doi.org/10.1371/journal.pone.0109382
Signor, S. A., & Nuzhdin, S. V. (2018). The evolution of gene expression in cis and trans. Trends in Genetics, 34(7), 532–544. https://doi.org/10.1016/j.tig.2018.03.007
Sumner, F. B. (1922). Longevity in Peromyscus. Journal of Mammalogy, 3(2), 79–81. https://doi.org/10.2307/1373298
Tirosh, I., Reikhav, S., Levy, A. A., & Barkai, N. (2009). A yeast hybrid provides insight into the evolution of gene expression regulation. Science, 324(5927), 659–662. https://doi.org/10.1126/science.1169766
Turro, E., Astle, W. J., & Tavaré, S. (2014). Flexible analysis of RNA-seq data using mixed effects models. Bioinformatics, 30(2), 180–188. https://doi.org/10.1093/bioinformatics/btt624
Turro, E., Su, S.-Y., Gonçalves, Â., Coin, L. J., Richardson, S., & Lewin, A. (2011). Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biology, 12(2), R13. https://doi.org/10.1186/gb-2011-12-2-r13
Urbut, S. M., Wang, G., Carbonetto, P., & Stephens, M. (2019). Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nature Genetics, 51(1), 187–195. https://doi.org/10.1038/s41588-018-0268-8
Verta, J.-P., & Jones, F. C. (2019). Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks. eLife, 8, 43785. https://doi.org/10.7554/eLife.43785
Vrana, P. B., Fossella, J. A., Matteson, P., Rio, T., O'Neill, M. J., & Tilghman, S. M. (2000). Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nature Genetics, 25(1), 120–124. https://doi.org/10.1038/75518
Wang, Q., Jia, Y., Wang, Y., Jiang, Z., Zhou, X., Zhang, Z., Nie, C., Li, J., Yang, N., & Qu, L. (2019). Evolution of cis- and trans-regulatory divergence in the chicken genome between two contrasting breeds analyzed using three tissue types at one-day-old. BMC Genomics, 20(1), 933. https://doi.org/10.1186/s12864-019-6342-5
Watson, M. L. (1942). Hybridization experiments between Peromyscus polionotus and Peromyscus maniculatus. Journal of Mammalogy, 23(3), 315–316. https://doi.org/10.2307/1375001
Wittkopp, P. J., Haerum, B. K., & Clark, A. G. (2008). Regulatory changes underlying expression differences within and between drosophila species. Nature Genetics, 40(3), 346–350. https://doi.org/10.1038/ng.77
Xu, X., Coats, J. K., Yang, C. F., Wang, A., Ahmed, O. M., Alvarado, M., Izumi, T., & Shah, N. M. (2012). Modular genetic control of sexually dimorphic behaviors. Cell, 148(3), 596–607. https://doi.org/10.1016/j.cell.2011.12.018
Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768. https://doi.org/10.1038/23475
Young, R. L., Ferkin, M. H., Ockendon-Powell, N. F., Orr, V. N., Phelps, S. M., Pogány, Á., Richards-Zawacki, C. L., Summers, K., Székely, T., Trainor, B. C., Urrutia, A. O., Zachar, G., O'Connell, L. A., & Hofmann, H. A. (2019). Conserved transcriptomic profiles underpin monogamy across vertebrates. Proceedings of the National Academy of Sciences, 116(4), 1331–1336. https://doi.org/10.1073/pnas.1813775116
Zhang, M., Pan, X., Jung, W., Halpern, A., Eichhorn, S. W., Lei, Z., Cohen, L., Smith, K. A., Tasic, B., Yao, Z., Zeng, H., & Zhuang, X. (2023). A molecularly defined and spatially resolved cell atlas of the whole mouse brain. bioRxiv. https://doi.org/10.1101/2023.03.06.531348