Computer Science Applications; General Materials Science; Modeling and Simulation; first-principles calculations; highthroughput calculations; magnetic materials; magnetic interactions; 2D materials
Abstract :
[en] We present a self-consistent method based on first-principles calculations to determine the magnetic ground state of materials, regardless of their dimensionality. Our methodology is founded on satisfying the stability conditions derived from the linear spin wave theory (LSWT) by optimizing the magnetic structure iteratively. We demonstrate the effectiveness of our method by successfully predicting the experimental magnetic structures of NiO, FePS3, FeP, MnF2, FeCl2, and CuO. In each case, we compared our results with available experimental data and existing theoretical calculations reported in the literature. Finally, we discuss the validity of the method and the possible extensions.
Disciplines :
Physics
Author, co-author :
Tellez-Mora, Andres
He, Xu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Wirtz, Ludger
Romero, Aldo ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; West Virginia University > Physics and Astronomy Department
Language :
English
Title :
Systematic determination of a material’s magnetic ground state from first principles
Publication date :
23 January 2024
Journal title :
npj Computational Materials
eISSN :
2057-3960
Publisher :
Springer Science and Business Media LLC
Volume :
10
Issue :
1
Pages :
20
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Campbell, P. Permanent Magnet Materials and Their Application (Cambridge University Press, Cambridge, England, 2012).
Heck, C. Magnetic Materials and Their Applications (Butterworth, USA, 1974).
Spaldin, N. A. Magnetic Materials, 2 edn. (Cambridge University Press, Cambridge, England, 2012).
Zhang, H. High-throughput design of magnetic materials. Electron. Struct. 3, 033001 (2021). DOI: 10.1088/2516-1075/abbb25
Torelli, D., Moustafa, H., Jacobsen, K. W. & Olsen, T. High-throughput computational screening for two-dimensional magnetic materials based on experimental databases of three-dimensional compounds. Npj Comput. Mater. 6, 158 (2020). DOI: 10.1038/s41524-020-00428-x
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013). DOI: 10.1038/nmat3568
Green, M. L., Takeuchi, I. & Hattrick-Simpers, J. R. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013). DOI: 10.1063/1.4803530
Stepanov, E. A. et al. Effective Heisenberg model and exchange interaction for strongly correlated systems. Phys. Rev. Lett. 121, 037204 (2018). DOI: 10.1103/PhysRevLett.121.037204
Torelli, D., Thygesen, K. S. & Olsen, T. High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations. 2d Materials 6, 045018 (2019). DOI: 10.1088/2053-1583/ab2c43
Mryasov, O. N., Nowak, U., Guslienko, K. Y. & Chantrell, R. W. Temperature-dependent magnetic properties of FePt: effective spin Hamiltonian model. EPL 69, 805–811 (2005). DOI: 10.1209/epl/i2004-10404-2
Halilov, S. V., Perlov, A. Y., Oppeneer, P. M. & Eschrig, H. Magnon spectrum and related finite-temperature magnetic properties: a first-principle approach. EPL 39, 91–96 (1997). DOI: 10.1209/epl/i1997-00319-x
Uhl, M. & Kübler, J. Exchange-coupled spin-fluctuation theory: application to Fe, Co, and Ni. Phys. Rev. Lett. 77, 334–337 (1996). DOI: 10.1103/PhysRevLett.77.334
Skubic, B. et al. Competing exchange interactions in magnetic multilayers. Phys. Rev. Lett. 96, 057205 (2006). DOI: 10.1103/PhysRevLett.96.057205
Ruban, A. V. & Razumovskiy, V. I. Spin-wave method for the total energy of paramagnetic state. Phys. Rev. B Condens. Matter Mater. Phys. 85, 174407 (2012). DOI: 10.1103/PhysRevB.85.174407
Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P. & Gubanov, V. A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987). DOI: 10.1016/0304-8853(87)90721-9
Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011). DOI: 10.1088/0034-4885/74/9/096501
Borisov, V. et al. Heisenberg and anisotropic exchange interactions in magnetic materials with correlated electronic structure and significant spin-orbit coupling. Phys. Rev. B. 103, 174422 (2021). DOI: 10.1103/PhysRevB.103.174422
Mankovsky, S. & Ebert, H. First-principles calculation of the parameters used by atomistic magnetic simulations. Electron. Struct. 4, 034004 (2022). DOI: 10.1088/2516-1075/ac89c3
Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015). DOI: 10.1088/0953-8984/27/16/166002
Colpa, J. H. P. Diagonalization of the quadratic boson hamiltonian. Physica A 93, 327–353 (1978). DOI: 10.1016/0378-4371(78)90160-7
Katsnelson, M. I. & Lichtenstein, A. I. First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B Condens. Matter 61, 8906–8912 (2000). DOI: 10.1103/PhysRevB.61.8906
Mankovsky, S. & Ebert, H. Accurate scheme to calculate the interatomic Dzyaloshinskii-Moriya interaction parameters. Phys. Rev. B. 96, 104416 (2017). DOI: 10.1103/PhysRevB.96.104416
He, X., Helbig, N., Verstraete, M. J. & Bousquet, E. TB2J: a python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021). DOI: 10.1016/j.cpc.2021.107938
Soler, J. M. et al. The SIESTA method forab initioorder-nmaterials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002). DOI: 10.1088/0953-8984/14/11/302
dos Santos, F. J., dos Santos Dias, M., Guimarães, F. S. M., Bouaziz, J. & Lounis, S. Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets. Phys. Rev. B. 97, 124431 (2018).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2
Moore, G. C. High-throughput determination of Hubbard U and hund J values for transition metal oxides via linear response formalism (2022).
Roth, W. L. Magnetic structures of MnO, FeO, CoO, and NiO. Phys. Rev. 110, 1333–1341 (1958). DOI: 10.1103/PhysRev.110.1333
Roth, W. L. & Slack, G. A. Antiferromagnetic structure and domains in single crystal NiO. J. Appl. Phys. 31, S352–S353 (1960). DOI: 10.1063/1.1984744
Lançon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet feps3. Phys. Rev. B. 94, 214407 (2016). DOI: 10.1103/PhysRevB.94.214407
Olsen, T. Magnetic anisotropy and exchange interactions of two-dimensional FePS3, NiPS3 and MnPS3 from first principles calculations. J. Phys. D Appl. Phys. 54, 314001 (2021). DOI: 10.1088/1361-6463/ac000e
Sukhanov, A. S. et al. Frustration model and spin excitations in the helimagnet FeP. Phys. Rev. B. 105, 134424 (2022). DOI: 10.1103/PhysRevB.105.134424
Felcher, G. P., Smith, F. A., Bellavance, D. & Wold, A. Magnetic structure of iron monophosphide. Phys. Rev. 3, 3046–3052 (1971). DOI: 10.1103/PhysRevB.3.3046
Yamani, Z., Tun, Z. & Ryan, D. H. Neutron scattering study of the classical antiferromagnet MnF2: a perfect hands-on neutron scattering teaching course special issue on neutron scattering in Canada. Can. J. Phys. 88, 771–797 (2010). DOI: 10.1139/P10-081
Vettier, C. & Yelon, W. B. Magnetic properties of FeCl2 at high pressure. Phys. Rev. 11, 4700–4710 (1975). DOI: 10.1103/PhysRevB.11.4700
Hu, J.-H. & Johnston, H. L. Low temperature heat capacities of inorganic solids. XVI. heat capacity of cupric oxide from 15 to 300 ∘k.1. J. Am. Chem. Soc. 75, 2471–2473 (1953). DOI: 10.1021/ja01106a056
Yang, B. X., Tranquada, J. M. & Shirane, G. Neutron scattering studies of the magnetic structure of cupric oxide. Phys. Rev. B Condens. Matter 38, 174–178 (1988). DOI: 10.1103/PhysRevB.38.174
Yang, B. X., Thurston, T. R., Tranquada, J. M. & Shirane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B Condens. Matter 39, 4343–4349 (1989). DOI: 10.1103/PhysRevB.39.4343
Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990). DOI: 10.1016/0304-8853(90)90689-N
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021). DOI: 10.1021/acs.nanolett.1c00219
Biniskos, N. et al. Complex magnetic structure and spin waves of the noncollinear antiferromagnet Mn5Si3. Phys. Rev. B. 105, 104404 (2022). DOI: 10.1103/PhysRevB.105.104404
Coldea, R. et al. Spin waves and electronic interactions in La2CuO4. Phys. Rev. Lett. 86, 5377–5380 (2001). DOI: 10.1103/PhysRevLett.86.5377
Kampf, A. & Katanin, A. A. Spin dynamics in La2CuO4: consistent description by the inclusion of ring exchange. Phys. C Supercond. 408–410, 311–312 (2004). DOI: 10.1016/j.physc.2004.02.113
Toader, A. M. et al. Spin correlations in the paramagnetic phase and ring exchange in La2CuO4. Phys. Rev. Lett. 94, 197202 (2005). DOI: 10.1103/PhysRevLett.94.197202
Fedorova, N. S., Ederer, C., Spaldin, N. A. & Scaramucci, A. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites. Phys. Rev. B 91, 165122 (2015). DOI: 10.1103/PhysRevB.91.165122
Mankovsky, S., Polesya, S. & Ebert, H. Extension of the standard Heisenberg hamiltonian to multispin exchange interactions. Phys. Rev. B. 101, 174401 (2020). DOI: 10.1103/PhysRevB.101.174401
Korotin, D. M., Mazurenko, V. V., Anisimov, V. I. & Streltsov, S. V. Calculation of exchange constants of the heisenberg model in plane-wave-based methods using the Green’s function approach. Phys. Rev. B 91, 224405 (2015). DOI: 10.1103/PhysRevB.91.224405
Oroszlány, L., Ferrer, J., Deák, A., Udvardi, L. & Szunyogh, L. Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets to the magnetism in low-dimensional graphene systems. Phys. Rev. B 99, 224412 (2019). DOI: 10.1103/PhysRevB.99.224412
Solovyev, I. V. Exchange interactions and magnetic force theorem. Phys. Rev. B 103, 104428 (2021). DOI: 10.1103/PhysRevB.103.104428
Bruno, P. Exchange interaction parameters and adiabatic spin-wave spectra of ferromagnets: a “renormalized magnetic force theorem”. Phys. Rev. Lett. 90, 087205 (2003). DOI: 10.1103/PhysRevLett.90.087205
Allred, J. M. et al. Double-Q spin-density wave in iron arsenide superconductors. Nat. Phys. 12, 493–498 (2016). DOI: 10.1038/nphys3629
Meng, Y.-S., Jiang, S.-D., Wang, B.-W. & Gao, S. Understanding the magnetic anisotropy toward single-ion magnets. Acc. Chem. Res. 49, 2381–2389 (2016). DOI: 10.1021/acs.accounts.6b00222
Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020). DOI: 10.1038/s41597-020-00638-4
García, A. et al. Siesta: Recent developments and applications. J. Chem. Phys. 152, 204108 (2020). DOI: 10.1063/5.0005077
Holm, S. L. et al. Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3. Phys. Rev. B. 97, 134304 (2018). DOI: 10.1103/PhysRevB.97.134304
Rudolf, T. et al. Spin-phonon coupling in antiferromagnetic chromium spinels. New J. Phys. 9, 76–76 (2007). DOI: 10.1088/1367-2630/9/3/076
Weber, M. C. et al. Emerging spin-phonon coupling through cross-talk of two magnetic sublattices. Nat. Commun. 13, 443 (2022). DOI: 10.1038/s41467-021-27267-8
Barcza, A., Gercsi, Z., Knight, K. S. & Sandeman, K. G. Giant magnetoelastic coupling in a metallic helical metamagnet. Phys. Rev. Lett. 104, 247202 (2010). DOI: 10.1103/PhysRevLett.104.247202
Fransson, J., Black-Schaffer, A. M. & Balatsky, A. V. Magnon dirac materials. Phys. Rev. B. 94, 075401 (2016). DOI: 10.1103/PhysRevB.94.075401
Chisnell, R. et al. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015). DOI: 10.1103/PhysRevLett.115.147201
Agrawal, M. et al. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B Condens. Matter Mater. Phys. 89, 224414 (2014). DOI: 10.1103/PhysRevB.89.224414
Flebus, B. et al. Magnon-polaron transport in magnetic insulators. Phys. Rev. B 95, 144420 (2017). DOI: 10.1103/PhysRevB.95.144420
Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). DOI: 10.1038/s41586-022-05024-1
Gómez-Ortiz, F. et al. Compatibility of DFT+U with non-collinear magnetism and spin-orbit coupling within a framework of numerical atomic orbitals. Comput. Phys. Commun. 286, 108684 (2023). DOI: 10.1016/j.cpc.2023.108684
van Setten, M. J. et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018). DOI: 10.1016/j.cpc.2018.01.012
García, A., Verstraete, M. J., Pouillon, Y. & Junquera, J. The psml format and library for norm-conserving pseudopotential data curation and interoperability. Comput. Phys. Commun. 227, 51–71 (2018). DOI: 10.1016/j.cpc.2018.02.011
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). DOI: 10.1103/PhysRevLett.77.3865
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). DOI: 10.1107/S0021889811038970
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). DOI: 10.1109/MCSE.2007.55
Jacobsson, A., Sanyal, B., Ležaić, M. & Blügel, S. Exchange parameters and adiabatic magnon energies from spin-spiral calculations. Phys. Rev. B Condens. Matter Mater. Phys. 88, 134427 (2013). DOI: 10.1103/PhysRevB.88.134427
Kotani, T. & van Schilfgaarde, M. Spin wave dispersion based on the quasiparticle self-consistent GW method: NiO, MnO and α-MnAs. J. Phys. Condens. Matter 20, 295214 (2008). DOI: 10.1088/0953-8984/20/29/295214
Shanker, R. & Singh, R. A. Analysis of the exchange parameters and magnetic properties of NiO. Phys. Rev. 7, 5000–5005 (1973). DOI: 10.1103/PhysRevB.7.5000
Wildes, A. R., Rule, K. C., Bewley, R. I., Enderle, M. & Hicks, T. J. The magnon dynamics and spin exchange parameters of FePS3. J. Phys. Condens. Matter 24, 416004 (2012). DOI: 10.1088/0953-8984/24/41/416004
Okuda, K., Kurosawa, K. and Saito, S. High Field Magnetization Process in FePS3 (Netherlands: North-Holland, 1983).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.