[en] Pathogenic strains of Escherichia coli F17+ are associated with various intestinal and extra-intestinal pathologies, including diarrhea, and result in significant animal mortality. These infections rely on the expression of virulence factors, such as F17 fimbriae, for adhesion. F17 fimbriae form a protective layer on the surface of E. coli bacteria, consisting of a major structural subunit, F17A, and a minor functional subunit, F17G. Because of the evolution of bacterial resistance, conventional antibiotic treatments have limited efficacy. Therefore, there is a pressing need to develop novel therapeutic tools. In this study, we cloned and produced the F17G protein. We then immunized a camel with the purified F17G protein and constructed a VHH library consisting of 2 × 109 clones. The library was then screened against F17G protein using phage display technology. Through this process, we identified an anti-F17G nanobody that was subsequently linked, via a linker, to an anti-F17A nanobody, resulting in the creation of an effective bispecific nanobody. Comprehensive characterization of this bispecific nanobody demonstrated excellent production, specific binding capacity to both recombinant forms of the two F17 antigens and the E. coli F17+ strain, remarkable stability in camel serum, and superior resistance to pepsin protease. The successful generation of this bispecific nanobody with excellent production, specific binding capacity and stability highlights its potential as a valuable tool for fighting infections caused by pathogenic E. coli F17+ strain.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Dhehibi, Asma; Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia. Electronic address: asmadhehibi@gmail.com
Terrak, Mohammed ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Seddik, Mabrouk-Mouldi; Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
Hammadi, Mohamed; Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
Salhi, Imed; Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
Language :
English
Title :
Development of a bispecific Nanobody anti-F17 fimbria as a potential therapeutic tool.
MHESR - Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Funding text :
This work was supported by PRF program of The Tunisian Ministry of Higher Education and Scientific Research (NanofastResponse, grant ref.: PRF2017D4P1).
Bihannic, M., Ghanbarpour, R., Auvray, F., Cavalie, L., Chatre, P., Boury, M., Brugere, H., Madec, J.Y., Oswald, E., Identification and detection of three new F17 fimbrial variants in Escherichia coli strains isolated from cattle. Vet. Res., 45, 2014, 76.
Saarela, S., Westerlund-Wikstrom, B., Rhen, M., Korhonen, T.K., The GafD protein of the G (F17) fimbrial complex confers adhesiveness of Escherichia coli to laminin. Infect. Immun. 64 (1996), 2857–2860.
Bessalah, S., Fairbrother, J.M., Salhi, I., Vanier, G., Khorchani, T., Seddik, M.M., Hammadi, M., Antimicrobial resistance and molecular characterization of virulence genes, phylogenetic groups of Escherichia coli isolated from diarrheic and healthy camel-calves in Tunisia. Comp. Immunol. Microbiol. Infect. Dis. 49 (2016), 1–7.
Siuce, J., Maturrano, L., Wheeler, J.C., Rosadio, R., Diarrheagenic Escherichia coli isolates from neonatal alpacas mainly display F17 fimbriae adhesion gene. Trop. Anim. Health Prod. 52 (2020), 3917–3921.
Stordeur, P., Marlier, D., Blanco, J., Oswald, E., Biet, F., Dho-Moulin, M., Mainil, J., Examination of Escherichia coli from poultry for selected adhesin genes important in disease caused by mammalian pathogenic E. coli. Vet. Microbiol. 84 (2002), 231–241.
van Duijkeren, E., van Asten, A.J., Gaastra, W., Characterization of Escherichia coli isolated from adult horses with and without enteritis. Vet. Q. 22 (2000), 162–166.
Jia, Y., Mao, W., Liu, B., Zhang, S., Cao, J., Xu, X., Study on the drug resistance and pathogenicity of Escherichia coli isolated from calf diarrhea and the distribution of virulence genes and antimicrobial resistance genes. Front. Microbiol., 13, 2022, 992111.
Arbabi-Ghahroudi, M., Camelid single-domain antibodies: historical perspective and future outlook. Front. Immunol., 8, 2017, 1589.
Jin, B.K., Odongo, S., Radwanska, M., Magez, S., Nanobodies: a review of generation, diagnostics and therapeutics. Int. J. Mol. Sci., 24, 2023, 5994.
Pillay, T.S., Muyldermans, S., Application of single-domain antibodies (“Nanobodies”) to laboratory diagnosis. Ann Lab Med 41 (2021), 549–558.
Wang, J., Kang, G., Yuan, H., Cao, X., Huang, H., de Marco, A., Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front. Immunol., 12, 2021, 838082.
Jin, B.-k., Odongo, S., Radwanska, M., Magez, S., Nanobodies: a review of generation, diagnostics and therapeutics. Int. J. Mol. Sci., 24, 2023, 5994.
Yang, E.Y., Shah, K., Nanobodies: next generation of cancer diagnostics and therapeutics. Front. Oncol., 10, 2020.
Dhehibi, A., Allaoui, A., Raouafi, A., Terrak, M., Bouhaouala-Zahar, B., Hammadi, M., Raouafi, N., Salhi, I., Nanobody-based sandwich immunoassay for pathogenic Escherichia coli F17 strain detection. Biosensors, 13, 2023, 299.
Muyldermans, S., A guide to: generation and design of nanobodies. FEBS J. 288 (2021), 2084–2102.
Baral, T.N., MacKenzie, R., Arbabi Ghahroudi, M., Single-domain antibodies and their utility. Curr. Protoc. Im. 103 (2013), 2 17 11–12 17 57.
Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., Muyldermans, S., Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414 (1997), 521–526.
Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G.F., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W.G.J., Kobilka, B.K., Steyaert, J., A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9 (2014), 674–693.
Salhi, I., Bessalah, S., Snoun, D., Khorchani, T., Hammadi, M., Construction of a nanobodies phage display library from an Escherichia coli immunized dromedary. Iran. J. Biotechnol., 18, 2020, e2247.
Salhi, I., Rabti, A., Dhehibi, A., Raouafi, N., Sandwich-based immunosensor for dual-mode detection of pathogenic F17-positive Escherichia coli strains. Int. J. Mol. Sci., 23, 2022, 6028.
Salhi, I., Bessalah, S., Mbarek, S.B., Chniter, M., Seddik, M.M., Khorchani, T., Hammadi, M., Passive transfer of maternal immunity in the dromedary (Camelus dromedarius), involvement of heavy chain antibodies. Trop. Anim. Health Prod. 47 (2015), 613–618.
Hussack, G., Hirama, T., Ding, W., Mackenzie, R., Tanha, J., Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One, 6, 2011, e28218.
Levi-Schaffer, F., de Marco, A., Coronavirus disease 2019 and the revival of passive immunization: antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review: 31. Br. J. Pharmacol. 178 (2021), 3359–3372.
Marston, H.D., Paules, C.I., Fauci, A.S., Monoclonal antibodies for emerging infectious diseases - borrowing from history. N. Engl. J. Med. 378 (2018), 1469–1472.
Tremblay, J.M., Mukherjee, J., Leysath, C.E., Debatis, M., Ofori, K., Baldwin, K., Boucher, C., Peters, R., Beamer, G., Sheoran, A., Bedenice, D., Tzipori, S., Shoemaker, C.B., A single VHH-based toxin-neutralizing agent and an effector antibody protect mice against challenge with Shiga toxins 1 and 2. Infect. Immun. 81 (2013), 4592–4603.
Vrentas, C.E., Moayeri, M., Keefer, A.B., Greaney, A.J., Tremblay, J., O'Mard, D., Leppla, S.H., Shoemaker, C.B., A diverse set of single-domain antibodies (VHHs) against the anthrax toxin lethal and edema factors provides a basis for construction of a bispecific agent that protects against anthrax infection. J. Biol. Chem. 291 (2016), 21596–21606.
Hussack, G., Ryan, S., van Faassen, H., Rossotti, M., MacKenzie, C.R., Tanha, J., Neutralization of Clostridium difficile toxin B with VHH-Fc fusions targeting the delivery and CROPs domains. PLoS One, 13, 2018, e0208978.
Unger, M., Eichhoff, A.M., Schumacher, L., Strysio, M., Menzel, S., Schwan, C., Alzogaray, V., Zylberman, V., Seman, M., Brandner, J., Rohde, H., Zhu, K., Haag, F., Mittrucker, H.W., Goldbaum, F., Aktories, K., Koch-Nolte, F., Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci. Rep., 5, 2015, 7850.
Pant, N., Marcotte, H., Hermans, P., Bezemer, S., Frenken, L., Johansen, K., Hammarstrom, L., Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiol. 6 (2011), 583–593.
Lintermans, P.F., Bertels, A., Schlicker, C., Deboeck, F., Charlier, G., Pohl, P., Norgren, M., Normark, S., van Montagu, M., De Greve, H., Identification, characterization, and nucleotide sequence of the F17-G gene, which determines receptor binding of Escherichia coli F17 fimbriae. J. Bacteriol. 173 (1991), 3366–3373.
Xi, X., Sun, W., Su, H., Zhang, X., Sun, F., Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking. Mol. Immunol. 128 (2020), 165–174.
Nagano, K., Tsutsumi, Y., Phage display technology as a powerful platform for antibody drug discovery. Viruses, 13, 2021, 178.
Glaven, R.H., Anderson, G.P., Zabetakis, D., Liu, J.L., Long, N.C., Goldman, E.R., Linking single domain antibodies that recognize different epitopes on the same target. Biosensors 2 (2012), 43–56.
Hartmann, L., Botzanowski, T., Galibert, M., Jullian, M., Chabrol, E., Zeder-Lutz, G., Kugler, V., Stojko, J., Strub, J.M., Ferry, G., Frankiewicz, L., Puget, K., Wagner, R., Cianferani, S., Boutin, J.A., VHH characterization. Comparison of recombinant with chemically synthesized anti-HER2 VHH. Protein Sci. 28 (2019), 1865–1879.
Hoseinpoor, R., Mousavi Gargari, S.L., Rasooli, I., Rajabibazl, M., Shahi, B., Functional mutations in and characterization of VHH against Helicobacter pylori urease. Appl. Biochem. Biotechnol. 172 (2014), 3079–3091.
Duhoo, Y., Roche, J., Trinh, T.T.N., Desmyter, A., Gaubert, A., Kellenberger, C., Cambillau, C., Roussel, A., Leone, P., Camelid nanobodies used as crystallization chaperones for different constructs of PorM, a component of the type IX secretion system from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 73 (2017), 286–293.
Kazemi-Lomedasht, F., Behdani, M., Habibi-Anbouhi, M., Shahbazzadeh, D., Production and characterization of novel camel single domain antibody targeting mouse vascular endothelial growth factor. Monoclon. Antibodies Immunodiagn. Immunother. 35 (2016), 167–171.
Moon, D., Tae, N., Park, Y., Lee, S.W., Kim, D.H., Development of bispecific antibody for cancer immunotherapy: focus on T cell engaging antibody. Immune Netw, 22, 2022, e4.
Moonens, K., De Kerpel, M., Coddens, A., Cox, E., Pardon, E., Remaut, H., De Greve, H., Nanobody mediated inhibition of attachment of F18 Fimbriae expressing Escherichia coli. PLoS One, 9, 2014, e114691.
Forbes, S.J., Eschmann, M., Mantis, N.J., Inhibition of Salmonella enterica serovar typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody. Infect. Immun. 76 (2008), 4137–4144.
Adams, H., Horrevoets, W.M., Adema, S.M., Carr, H.E.V., van Woerden, R.E., Koster, M., Tommassen, J., Inhibition of biofilm formation by Camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. J. Biotechnol. 186 (2014), 66–73.
Adawi, A., Bisignano, C., Genovese, T., Filocamo, A., Khouri-Assi, C., Neville, A., Feuerstein, G.Z., Cuzzocrea, S., Neville, L.F., In vitro and in vivo properties of a fully human IgG1 monoclonal antibody that combats multidrug resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 30 (2012), 455–464.