Energy (miscellaneous); Energy Engineering and Power Technology; Renewable Energy, Sustainability and the Environment; Electrical and Electronic Engineering; Control and Optimization; Engineering (miscellaneous); Building and Construction
Abstract :
[en] Thermal processes represent a significant fraction of industrial energy consumptions, and they rely mainly on fossil fuels. Thanks to technological innovation, highly efficient devices such as high-temperature heat pumps are becoming a promising solution for the electrification of industrial heat. These technologies allow for recovering waste heat sources and upgrading them at temperatures up to 200 °C. Moreover, the coupling of these devices with thermal storage units can unlock the flexibility potential deriving from the industrial sector electrification by means of Demand-Side Management strategies. The aim of this paper is to quantify the impact on the energy system due to the integration of industrial high-temperature heat pumps and thermal storage units by means of a detailed demand–supply model. To do that, the industrial heat demand is investigated through a set of thermal process archetypes. High-temperature heat pumps and thermal storage units for industrial use are included in the open-source unit commitment and optimal dispatch model Dispa-SET used for the representation of the energy system. The case study analyzed is Belgium, and the analysis is performed for different renewable penetration scenarios in 2040 and 2050. The results demonstrate the importance of a proper sizing of the heat pump and thermal storage capacity. Furthermore, it is obtained that the electrification of the thermal demand of industrial processes improves the environmental impact (84% reduction in CO2 emissions), but the positive effect of the energy flexibility provided by the heat pumps is appreciated only in the presence of a very high penetration of renewable energy sources.
Disciplines :
Energy
Author, co-author :
Magni, Chiara; Department of Mechanical Engineering, KU Leuven, B-3000 Leuven, Belgium
Peeters, Robbe; Department of Mechanical Engineering, KU Leuven, B-3000 Leuven, Belgium
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Arteconi, Alessia ; Department of Mechanical Engineering, KU Leuven, B-3000 Leuven, Belgium ; EnergyVille, Thor Park, B-3600 Genk, Belgium ; Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, 60131 Ancona, Italy
Language :
English
Title :
Assessing the Flexibility Potential of Industrial Heat–Electricity Sector Coupling through High-Temperature Heat Pumps: The Case Study of Belgium
JRC Decarbonising the EU Heating Sector European Union Brussels, Belgium 2019 10.2760/943257
European Commission A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy European Commission Brussels, Belgium 2018
European Commission The European Green Deal European Commission Brussels, Belgium 2019 Volume 53 24 10.1017/CBO9781107415324.004
Thiel G.P. Stark A.K. To decarbonize industry, we must decarbonize heat Joule 2021 5 531 550 10.1016/j.joule.2020.12.007
Bühler F. Holm F.M. Elmegaard B. Potentials for the electrification of industrial processes in Denmark Proceedings of the ECOS 2019—The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems Wroclaw, Poland 23–28 June 2019 2137 2152
Schüwer D. Schneider C. Electrification of industrial process heat: Long-term applications, potentials and impacts ECEEE Ind. Summer Study Proc. 2018 2018 411 422
Brolin M. Fahnestock J. Rootzén J. Industry’s Electrification and Role in the Future Electricity System—A Strategic Innovation Agenda 2017 Available online: https://www.diva-portal.org/smash/get/diva2:1073841/FULLTEXT01.pdf (accessed on 15 January 2024)
Hamid K. Sajjad U. Ahrens M.U. Ren S. Ganesan P. Tolstorebrov I. Arshad A. Said Z. Hafner A. Wang C.-C. et al. Potential evaluation of integrated high temperature heat pumps: A review of recent advances Appl. Therm. Eng. 2023 230 120720 10.1016/j.applthermaleng.2023.120720
Arpagaus C. Bless F. Uhlmann M. Schiffmann J. Bertsch S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials Energy 2018 152 985 1010 10.1016/j.energy.2018.03.166
MoonshotFlanders Upheat-INES Available online: https://moonshotflanders.be/mot4-upheat-ines (accessed on 1 March 2022)
Encore—Next Generation Compression Heat Pump Available online: https://ispt.eu/projects/encore (accessed on 1 March 2022)
Qpinch Available online: https://www.qpinch.com (accessed on 20 April 2022)
Sintef—HeatUp Project Available online: https://www.sintef.no/projectweb/heatup (accessed on 15 January 2024)
Turboden Large Heat Pump Available online: https://www.turboden.com/solutions/2602/large-heat-pump (accessed on 20 April 2022)
I.E.A Annex 58—High Temperature Heat Pumps Available online: https://heatpumpingtechnologies.org/annex58 (accessed on 15 January 2024)
Naegler T. Simon S. Klein M. Gils H.C. Quantification of the European industrial heat demand by branch and temperature level Int. J. Energy Res. 2019 2015 2019 2030 10.1002/er.3436
Pardo N. Vatopoulos K. Riekkola A.K. Perez A. Methodology to estimate the energy flows of the European Union heating and cooling market Energy 2013 52 339 352 10.1016/j.energy.2013.01.062
Rehfeldt M. Rohde C. Fleiter T. Toro F. Reitze F. A bottom-up estimation of heating and cooling demand in the European industry ECEEE Ind. Summer Study Proc. 2016 2016 59 69 10.1007/s12053-017-9571-y
Marina A. Spoelstra S. Zondag H.A. Wemmers A.K. An estimation of the European industrial heat pump market potential Renew. Sustain. Energy Rev. 2021 139 110545 10.1016/j.rser.2020.110545
Bloess A. Schill W.P. Zerrahn A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials Appl. Energy 2018 212 1611 1626 10.1016/j.apenergy.2017.12.073
Strbac G. Demand side management: Benefits and challenges Energy Policy 2008 36 4419 4426 10.1016/j.enpol.2008.09.030
Verhaegen R. Dierckxsens C. Existing Business Models for Renewable Energy Aggregators 2016 Available online: http://bestres.eu/wp-content/uploads/2016/08/BestRES_Existing-business-models-for-RE-aggregators.pdf (accessed on 15 January 2024)
Heffron R. Körner M.F. Wagner J. Weibelzahl M. Fridgen G. Industrial demand-side flexibility: A key element of a just energy transition and industrial development Appl. Energy 2020 269 115026 10.1016/j.apenergy.2020.115026
Shoreh M.H. Siano P. Shafie-khah M. Loia V. Catalão J.P.S. A survey of industrial applications of Demand Response Electr. Power Syst. Res. 2016 141 31 49 10.1016/j.epsr.2016.07.008
Söder L. Lund P.D. Koduvere H. Bolkesjø T.F. Rossebø G.H. Rosenlund-Soysal E. Skytte K. Katz J. Blumberga D. A review of demand side flexibility potential in Northern Europe Renew. Sustain. Energy Rev. 2018 91 654 664 10.1016/j.rser.2018.03.104
Ma Z. Friis H.T.A. Mostrup C.G. Jørgensen B.N. Energy flexibility potential of industrial processes in the regulating power market Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2017) Porto, Portugal 22–24 April 2017 10.5220/0006380201090115
Heitkoetter W. Schyska B.U. Schmidt D. Medjroubi W. Vogt T. Agert C. Assessment of the regionalised demand response potential in Germany using an open source tool and dataset Adv. Appl. Energy 2020 1 100001 10.1016/j.adapen.2020.100001
Paulus M. Borggrefe F. The potential of demand-side management in energy-intensive industries for electricity markets in Germany Appl. Energy 2011 88 432 441 10.1016/j.apenergy.2010.03.017
Papadaskalopoulos D. Moreira R. Strbac G. Pudjianto D. Djapic P. Teng F. Papapetrou M. Quantifying the potential economic benefits of flexible industrial demand in the european power system IEEE Trans. Ind. Inform. 2018 14 5123 5132 10.1109/TII.2018.2811734
Sadjjadi B.S. Gerdes J.-N. Sauer A. Energy flexible heat pumps in industrial energy systems: A review Energy Rep. 2023 9 (Suppl. 3) 386 394 10.1016/j.egyr.2022.12.110
Nolan S. Malley M.O. Challenges and barriers to demand response deployment and evaluation Appl. Energy 2015 152 1 10 10.1016/j.apenergy.2015.04.083
Good N. Ellis K.A. Mancarella P. Review and classification of barriers and enablers of demand response in the smart grid Renew. Sustain. Energy Rev. 2017 72 57 72 10.1016/j.rser.2017.01.043
Quoilin S. The Dispa-SET Model Available online: http://www.dispaset.eu/en/latest (accessed on 15 January 2024)
Jensen J.K. Ommen T. Reinholdt L. Markussen W.B. Elmegaard B. Heat pump COP, part 2: Generalized COP estimation of heat pump processes Refrig. Sci. Technol. 2018 2018 1255 1264 10.18462/iir.gl.2018.1386
Manente G. Ding Y. Sciacovelli A. A structured procedure for the selection of thermal energy storage options for utilization and conversion of industrial waste heat J. Energy Storage 2022 51 104411 10.1016/j.est.2022.104411
Oemof Open Energy Modelling Framework—Python Toolbox for Energy System Modelling and Optimisation Available online: https://oemof-thermal.readthedocs.io/en/latest/stratified_thermal_storage.html (accessed on 15 January 2024)
Paardekooper S. Heat Roadmap Belgium Quantifying the Impact of Low-Carbon Aalborg University Aalborg, Denmark 2018 Available online: https://vbn.aau.dk/ws/portalfiles/portal/287929422/Country_Roadmap_Belgium_20181005.pdf (accessed on 15 January 2024)
Kim Y.H. Energy efficiency improvement in a modified ethanol process from acetic acid Entropy 2016 18 422 10.3390/e18120422
Matsuda K. Kurosaki D. Hayashi D. Aoyama K. Industrial heat pump study using pinch technology for a large scale petrochemical site Chem. Eng. Trans. 2012 29 67 72 10.3303/CET1229012
Wei R. Yan C. Yang A. Shen W. Li J. Chemical Engineering Research and Design Improved process design and optimization of 200 kt / a ethylene glycol production using coal-based syngas Chem. Eng. Res. Des. 2018 132 551 563 10.1016/j.cherd.2018.02.006
Luo H. Bildea C.S. Kiss A.A. Novel heat-pump-assisted extractive distillation for bioethanol purification Ind. Eng. Chem. Res. 2015 54 2208 2213 10.1021/ie504459c
ENTSO-E e-Highway 2050: Results Available online: https://docs.entsoe.eu/baltic-conf/bites/www.e-highway2050.eu/results (accessed on 15 January 2024)
Emission Factor NG Available online: https://www.climfoot-project.eu/en/what-emission-factor (accessed on 20 April 2022)
Emission Factor Electricity Production Available online: https://ourworldindata.org/grapher/carbon-intensity-electricity (accessed on 20 April 2022)