bulk superconductor; flux pinning; interacting bulk superconductors; magnetic field gradient; stacked tapes; trapped-field magnet; Bulk superconductors; Halbach array; Interacting bulk superconductor; Magnetic field gradient; Magnetization direction; Orthogonal magnetizations; Stacked tape; Trapped field; Trapped-field magnets; Ceramics and Composites; Condensed Matter Physics; Metals and Alloys; Electrical and Electronic Engineering; Materials Chemistry
Abstract :
[en] Assembling trapped-field superconducting magnets with mutually orthogonal magnetizations directions in a Halbach array configuration offers the prospect of generating both high fields and large field gradients. A major issue when assembling bulk superconductors in a Halbach array, however, consists in the alteration of the initial current density distribution during the assembly process. This reorganization of supercurrent loops limits the field generated by the system. We investigate two methods for reducing this demagnetization effect. The first method consists of using stacked tapes instead of bulk superconductors. For the second method, we propose a procedure leading to a re-magnetizing the superconductors of the array after the assembly. The procedure consists in putting two superconductors on top of one another, magnetizing them along the vertical direction, and then keeping the pair in place while two other superconductors, magnetized in an horizontal direction, are approached from left and right. The top central sample is then removed from the array, thereby providing the desired re-magnetization of the bottom one. The benefits of this procedure was investigated by finite element modelling and experiments carried out at 77 K both with bulk YBa2Cu3O 7 − x superconductors ( ∼ 14 × 14 × 14 mm3) and with stacks of second generation YBa2Cu3O 7 − x tapes from Superpower ( ∼ 12 × 12 × 12 mm3). The flux density measured above the array is compared to analytical results and finite element simulations. The results show that a re-magnetization of the central sample occurs, which allows the maximum field generated with Halbach arrays made of three bulk superconductors or three stacked tapes to be increased by 5% and 11% respectively. Numerical modelling shows that using a taller top sample with this method allows to recover almost the full potential of the array.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Houbart, Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques
Fagnard, Jean-François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques
Dular, J. ; TE-MPE-PE, CERN, Geneva, Switzerland
Dennis, A.R. ; University of Cambridge, Bulk Superconductivity Group, Cambridge, United Kingdom
Namburi, D.K. ; Quantum Sensors Group, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
Durrell, J.H. ; University of Cambridge, Bulk Superconductivity Group, Cambridge, United Kingdom
Geuzaine, Christophe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Vanderheyden, Benoît ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Electronique et microsystèmes
Vanderbemden, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
How to overcome the demagnetization of superconducting Halbach arrays?
This work was supported by the Fonds de la Recherche Scientifique—FNRS under Grant CDR No. J.0218.20 (35325237). Michel Houbart is recipient of an FRS-FNRS Research Fellow grant.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Barnsley L C Carugo D Owen J Stride E 2015 Phys. Med. Biol. 60 8303 27 8303-27 10.1088/0031-9155/60/21/8303
Barnsley L C Carugo D Stride E 2016 J. Phys. D: Appl. Phys. 49 225501 10.1088/0022-3727/49/22/225501
Kee H Lee H Park S 2020 J. Magn. Magn. Mater. 514 167180 10.1016/j.jmmm.2020.167180
Omelyanchik A Lamura G Peddis D Canepa F 2021 J. Magn. Magn. Mater. 522 167491 10.1016/j.jmmm.2020.167491
Fohr F Volbers N 2018 AIP Adv. 8 047701 10.1063/1.4989437
Brown D Ma B-M Chen Z 2002 J. Magn. Magn. Mater. 248 432 40 432-40 10.1016/S0304-8853(02)00334-7
Houbart M Fagnard J-F Dular J Dennis A R Namburi D K Durrell J H Geuzaine C Vanderheyden B Vanderbemden P 2022 Supercond. Sci. Technol. 35 064005 10.1088/1361-6668/ac68a7
Nariki S Teshima H Morita M 2016 Supercond. Sci. Technol. 29 034002 10.1088/0953-2048/29/3/034002
Tomita M Murakami M 2003 Lett. Nat. 421 517 20 517-20 10.1038/nature01350
Durrell J H et al 2014 Supercond. Sci. Technol. 27 082001 10.1088/0953-2048/27/8/082001
Patel A Baskys A Mitchell-Williams T McCaul A Coniglio W Hänisch J Lao M Glowacki B A 2018 Supercond. Sci. Technol. 31 09LT01 10.1088/1361-6668/aad34c
Funaki K Yamafuji K 1982 Jpn. J. Appl. Phys. 21 299 304 299-304 10.1143/JJAP.21.299
Campbell A M Baghdadi M Patel A Zhou D Huang K Y Shi Y-H Coombs T A 2017 Supercond. Sci. Technol. 30 034005 10.1088/1361-6668/aa52f2
Hong Z Vanderbemden P Pei R Jiang Y Campbell A M Coombs T A 2008 IEEE Trans. Appl. Supercond. 18 1561 4 1561-4 10.1109/TASC.2008.920594
Vanderbemden P Hong Z Coombs T A Denis S Ausloos M Schwartz J Rutel I B Hari Babu N Cardwell D A Campbell A M 2007 Phys. Rev. B 75 174515 10.1103/PhysRevB.75.174515
Fisher L M Kalinov A V Savel’ev S E Voloshin I F Yampol’skii V A Leblanc M A R Hirscher S 1997 Physica C 278 169 79 169-79 10.1016/S0921-4534(97)00125-1
Srpcic J Perez F Huang K Y Shi Y-H Ainslie M D Dennis A R Filipenko M Boll M Cardwell D A Durell J H 2019 Supercond. Sci. Technol. 32 035010 10.1088/1361-6668/aafcd3
Luzuriaga J Badía-Majós A Nieva G López C Serquis A Serrano G 2009 Supercond. Sci. Technol. 22 015021 10.1088/0953-2048/22/1/015021
Kapolka M Srpcic J Zhou D Ainslie M D Pardo E Dennis A R 2018 IEEE Trans. Appl. Supercond. 28 6801405 10.1109/TASC.2018.2808401
Patel A Filar K Nizhankovskii V I Hopkins S C Glowacki B A 2013 Appl. Phys. Lett. 102 102601 10.1063/1.4795016
Tamegai T Hirai T Sun Y Pyon S 2016 Phys. C: Supercond. 530 20 23 20-23 10.1016/j.physc.2016.02.006
Baghdadi M Ruiz H S Coombs T A 2014 Appl. Phys. Lett. 104 232602 10.1063/1.4879263
Baghdadi M Ruiz H S Coombs T A 2018 Sci. Rep. 8 1342 10.1038/s41598-018-19681-8
Baskys A Patel A Glowacki B A 2018 Supercond. Sci. Technol. 31 065011 10.1088/1361-6668/aabf32
Kapolka M Pardo E Grilli F Baskys A Climente-Alarcon V Dadhich A Glowacki B A 2020 Supercond. Sci. Technol. 33 044019 10.1088/1361-6668/ab5aca
Cardwell D A 1998 Mater. Sci. Eng. B 53 1 10 1-10 10.1016/S0921-5107(97)00293-6
Shi Y-H Namburi D K Zhao W Durrell J H Dennis A R Cardwell D A 2016 Supercond. Sci. Technol. 29 015010 10.1088/0953-2048/29/1/015010
Namburi D K Shi Y-H Zhai W Dennis A R Durrell J H Cardwell D A 2015 Cryst. Growth Des. 15 1472 80 1472-80 10.1021/cg501813y
Namburi D K Shi Y Cardwell D A 2021 Supercond. Sci. Technol. 34 053002 10.1088/1361-6668/abde88
Bean C P 1962 Phys. Rev. Lett. 8 250 3 250-3 10.1103/PhysRevLett.8.250
Podlivaev A I Rudnev I A Shabanova N P 2014 Bull. Lebedev Phys. Inst. 41 351 4 351-4 10.3103/S1068335614120033
Rudnev I A Podlivaev A I 2016 IEEE Trans. Appl. Supercond. 26 8200104 10.1109/TASC.2016.2516347
Rudnev I Abin D Osipov M Pokrovskiy S Ermolaev Y Mineev N 2015 Phys. Proc. 65 141 4 141-4 10.1016/j.phpro.2015.05.086
Dular J Berger K Geuzaine C Vanderheyden B 2022 IEEE Trans. Magn. 58 8205204 10.1109/TMAG.2022.3167839
Yamazaki K 1997 EEJ 118 111 20 111-20 10.1002/(SICI)1520-6416(19970115)118:1<1::AID-EEJ1>3.0.CO;2-C
Yamasaki H Mawatari Y 2000 Supercond. Sci. Technol. 13 202 8 202-8 10.1088/0953-2048/13/2/315
Houbart M Fagnard J-F Dennis A R Namburi D K Shi Y Durrell J H Vanderbemden P 2020 Supercond. Sci. Technol. 33 064003 10.1088/1361-6668/ab87ac
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.