finite element method; Large strains; inverse problems; parameter identification; forming processes optimization; optimization methods; cascade algorithm
Abstract :
[en] Computer simulations of metal forming processes using the finite element method (FEM) are, today, well established. This form of simulation uses an increasing number of sophisticated geometrical and material models, relying on a certain number of input data, which are not always readily available. The aim of inverse problems, which will be considered here, is to determine one or more of the input data relating to these forming process simulations, thereby leading to a desired result. In this paper, we will focus on two categories of such inverse problems. The first category consists of parameter identification inverse problems. These involve evaluating the material parameters for material constitutive models that would lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental results and FEM simulations. The second category consists of shape/process optimization inverse problems. These involve determining the initial geometry of the specimen and/or the shape of the forming tools, as well as some parameters of the process itself, in order to provide the desired final geometry after the forming process. These two categories of inverse problems can be formulated as optimization problems in a similar way, i.e. by using identical optimization algorithms. In this paper, we intend firstly to solve these two types of optimization problems by using different non-linear gradient based optimization methods and secondly to compare their efficiency and robustness in a variety of numerical applications. (c) 2005 Elsevier B.V. All rights reserved.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ahmetoglu M., and Altan T. Tube hydroforming: state-of-the-art and future trends. J. Mater. Process. Technol. 98 (2000) 25-33
Amar G., and Dufailly J. Identification and validation of viscoplastic and damage constitutive equations. Eur. J. Mech. A/Solids 12 2 (1993) 197-218
Antonio C.A.C., and Dourado M.N. Metal-forming process optimisation by inverse evolutionary search. J. Mater. Process. Technol. 121 (2002) 403-413
Antonio C.C., Castro C.F., and Sousa L.C. Optimization of metal forming processes. Comput. Struct. 82 (2004) 1425-1433
Antunez H.J., and Kleiber M. Sensitivity of forming processes to shape parameters. Comput. Methods Appl. Mech. Engrg. 137 (1996) 189-206
Argyris J., and Doltsinis I.St. A primer on superplasticity in natural formulation. Comput. Methods Appl. Mech. Engrg. 46 (1984) 83-131
O. Barlet, H. Naceur, J.L. Batoz, C. Knopf-Lenoir, Shape optimum design of blank contours using a simplified inverse approach, in: F.P.T. Baaijens J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Balkema, Rotterdam, June 1998, pp. 787-792.
Batoz J.-L., Guo Y.Q., and Mercier F. The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Engrg. Comput. 15 7 (1998) 864-892
Batoz J.L., and Guo Y.Q. Analysis and design of sheet forming parts using a simplified inverse approach. In: Owen D.R.J., Oñate E., and Hinton E. (Eds). Comput. Plasticity, Fundmen. and Appl. (1997), CIMNE, Barcelona 178-195
Beckers M., and Kopp R. A new approach to optimization of metal forming processes. In: Thomson E. (Ed). NUMIFORM'89 (1989), Balkema, Rotterdam 107-113
Bertsekas D. Nonlinear Programming (1995), Athena Scientific, Belmont, Massachusetts
Bertsekas D. Constrained Optimization and Lagrange Multiplier Methods (1996), Athena Scientific, Belmont, Massachusetts
Bolzon G., Fedele R., and Maier G. Parameter identification of a cohesive crack model by Kalman filter. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2847-2871
Boman R., and Ponthot J.P. Finite element simulation of lubricated contact in rolling using the Arbitrary Lagrangian-Eulerian formulation. Comput. methods Appl. Mech. Engrg. 193 (2004) 4323-4553
Bonnans J.F., Gilbert J.C., Lemarechal C., and Sagastizabal C.A. Numerical Optimization-Theoretical and Practical Aspects (2003), Springer
Brezocnik M., Balic J., and Brezocnik Z. Emergence of intelligence in next-generation manufacturing systems. Robot. Comput. Integr. Manufact. 19 (2003) 55-63
Brezocnik M., Balic J., and Kampus Z. Modeling of forming efficiency using genetic programming. J. Mater. Process. Technol. 109 (2001) 20-29
G. Cailletaud, P. Pilvin, Identification, problémes inverse: un concept modulaire, in: 2ième Colloque National en Calcul des Structures, Giens, 1993, pp. 770-787.
Cailletaud G., and Pilvin P. Identification and inverse problems related to material behaviour. In: Bui H.D., and Tanaka M. (Eds). Inverse Problems in Engineering Mechanics (1994), Balkema, Rotterdam 79-86
Cantu-Paz E. Efficient and Accurate Parallel Genetic Algorithms (2000), Kluwer Academic Publisher
Castro C.F., Antonio C.A.C., and Sousa L.C. Optimization of shape and process parameters in metal forging using genetic algorithm. J. Mater. Process. Technol. 146 (2004) 356-364
Chaboche J.L., Nouailhas D., and Savalle S. Agice: Logiciel pour l'identification interactive graphique des lois de comportement. La Recherche Aérospatiale 3 (1991) 59-76
Chakraborti N. Genetic algorithms in material design and processing. Int. Mater. Rev. 49 3-4 (2004) 246-260
Charmpis N.D., Lagaros D.C., and Papadrakakis M. Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing algorithms. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3315-3330
Chen B., and Tong L. Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1891-1911
Chenot J.L., Massoni E., and Fourment L. Inverse problems in finite element simulation of metal forming processes. Engrg. Comput. 13 2/3/4 (1996) 190-225
Chung J.S., and Hwang S.M. Application of a genetic algorithm to the optimal design of the die shape in extrusion. J. Mater. Process. Technol. 72 (1997) 69-77
Chung J.S., and Hwang S.M. Application of a genetic algorithm to process optimal design in nonisothermal metal forming. J. Mater. Process. Technol. 80-81 (1998) 136-143
Chung S.H., Fourment L., Chenot J.L., and Hwang S.M. Adjoint state method for shape sensitivity analysis in non-steady forming applications. Int. J. Numer. Methods Engrg. 57 (2003) 1431-1444
Coello C. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inform. Syst. 1 3 (1999) 269-308
de Castilho V.C., do Carmo Nicoletti M., and El Debs M.K. An investigation of the use of three selection-based genetic algorithm families when minimizing the production cost of hollow core slabs. Comput. Methods Appl. Mech. Engrg. 194 (2005) 4651-4667
Delameziere A., Naceur H., Breitkopf P., Knopf-Lenoir C., Batoz P., and Villon J.-L. Feasibility in deep drawing: optimization of material properties using response surface. Mec. Ind. 3 (2002) 93-98
Dennis J.E., and Schnabel R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice-Hall, NJ
Di Lorenzo R., Fratini N., Filice L., Micari S., and Bruschi S. Comparison of analytical methods and AI tools for material characterisation in hot forming. J. Mater. Process. Technol. 125-126 (2002) 434-439
Doltsinis I., and Rodic T. Process design and sensitivity analysis in metal forming. Int. J. Numer. Methods Engrg. 45 (1999) 661-692
Doltsinis I.St. Large Deformation Processes of Solids-from Fundamentals to Numerical Simulation and Engineering Applications (2004), WIT Press
Donea J., Huerta A., Ponthot J.P., and Rodriguez-Ferran A. Arbitrary Lagrangian-Eulerian methods. In: Wiley E., Stein R., de Borst R., and Hughes T.J.R. (Eds). Encyclopedia of Computational Mechanics (Chapter 14) vol. 1 (2004), Wiley, Chichester 413-438
Fancello E.A., and Feijoo R.A. Shape optimization in frictionless contact problems. Int. J. Numer. Methods Engrg. 37 (1994) 2311-2335
Feng X.T., and Yang C. Genetic evolution of nonlinear material constitutive models. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5957-5973
Fleury C. A unified approach to structural weight minimization. Comput. Methods Appl. Mech. Engrg. 20 1 (1979) 17-38
Fleury C. CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim. 1 (1989) 81-89
Fleury C. First and second order convex approximation strategies in structural optimization. Struct. Optim. 1 (1989) 3-10
Fontaine J.F. The torsion-tensile testing method for the characterization of cold metal formability. J. Mater. Process. Technol. 32 (1992) 253-262
Fourment L., Balan T., and Chenot J.L. Optimisation de forme d'outils en forgeage. Deuxieme colloque national en calcul des structures (1995), HERMES, Giens, France 807-812
Fourment L., Balan T., and Chenot J.L. Optimal design for non-steady-state metal forming processes-II. Application of shape optimization in forging. Int. J. Numer. Methods Engrg. 39 (1996) 51-65
Fourment L., Balan T., and Chenot J.L. Optimum design of the hot forging process: a FE inverse model with remeshing for large deformation. In: Owen D.R.J., Oñate E., and Hinton E. (Eds). Computational Plasticity: Fundamentals and Applications (1997), CIMNE, Barcelona 804-809
Fourment L., and Chenot J.L. The inverse problem of design in forging. 2nd International Symposium on Inverse Problems (1994), Balkema, Rotterdam 21-28
Fourment L., and Chenot J.L. Optimal design for non-steady-state metal forming processes-I. Shape optimization method. Int. J. Numer. Methods Engrg. 39 (1996) 33-50
Fourment L., and Chenot J.L. Inverse methods applied to metal forming processes. In: Topping B.H.V. (Ed). Computational Mechanics for the Twenty-First Century (2000), Saxe-Coburg Publications, Edinburgh 127-143
Furukawa T. Parameter identification with weightless regularization. Int. J. Numer. Methods Engrg. 52 (2001) 219-238
Furukawa T., Sugata T., Yoshimura S., and Hoffman M. An automated system for simulation and parameter identification of inelastic constitutive models. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2235-2260
Furukawa T., and Yagawa G. Inelastic constitutive parameter identification using an evolutionary algorithm with continuous individuals. Int. J. Numer. Methods Engrg. 40 (1997) 1071-1090
Furukawa T., and Yagawa G. Implicit constitutive modelling for viscoplasticity using neural networks. Int. J. Numer. Methods Engrg. 43 (1998) 195-219
Gavrus A., Massoni E., and Chenot J.L. Computer aided rheology for constitutive parameter identification. In: Owen D.R.J., et al. (Ed). 4th International Conference on Computational Plasticity (1995), Pineridge Press 755-766
Gavrus A., Massoni E., and Chenot J.L. Constitutive parameter identification using a computer aided rheology approach. In: Shen S.F., et al. (Ed). 5th International Conference on Numerical Methods in Industrial Forming Processes (1995), Balkema, Rotterdam 563-568
Gavrus A., Massoni E., and Chenot J.L. An inverse analysis using a finite element model for identification of rheological parameters. J. Mater. Process. Technol. 60 1-4 (1996) 447-454
A. Gavrus, E. Massoni, J.L. Chenot, An inverse finite element analysis applied to viscoplastic parameter identification, in: John Wiley and Sons (Eds.), Second ECCOMAS Conference on Numerical Methods in Engineering, Paris, September 1996.
Gelin J.-C., and Ghouati O. An inverse method for determining viscoplastic properties of aluminium alloys. J. Mater. Process. Technol. 45 1-4 (1994) 435-440
Gelin J.-C., and Ghouati O. An inverse solution procedure for material parameters identification in large plastic deformation. Commun. Numer. Methods Engrg. 12 3 (1996) 161-173
J.C. Gelin, Apports de la modélisation numérique pour l'identification du comportement des matériaux en vue de leur mise en forme, in: O. Debordes, A. Dogui, F. Sidoroff (Eds.), Intéractions expérience-calcul pour l'identification du comportement mécanique des matériaux, page supplement, November 1998.
Gelin J.C., and Ghouati O. Une méthode d'identification inverse des paramètres matériels pour les comportements non-linéaires. Rev. Européenne des éléments Finis 4 4 (1995) 463-485
O. Ghouati, Identification et Modélisation Numérique Directe et Inverse du comportement Viscoplastique des Alliages d'Aluminium, Ph.D. thesis, U.F.R. des Sciences et Techniques de l'Université de Franche-Comté, July 1994.
Ghouati O., and Gelin J.-C. Identification of material parameters directly from metal forming processes. J. Mater. Process. Technol. 80-81 (1998) 560-564
Ghouati O., Gelin J.C., Baida M., and Lenoir H. Simulation and control of hydroforming processes for tubes or flanges forming. In: Govas J.A. (Ed). 2nd ESAFORM Conference on Material Forming (1999), Guimarães, Portugal 473-476
O. Ghouati, D. Joannic, J.C. Gelin, Etude et optimisation des paramètres de procédé pour le contrôle du retour elastique de pièces embouties, in: Peseux et al., (Eds.), 3ième Col. Nat. Calcul des Structures, Presses Académ. Ouest, 1997, pp. 729-734.
O. Ghouati, D. Joannic, J.C. Gelin, Optimisation of process parameters for the control of springback in deep drawing, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, june 1998, pp. 787-792.
O. Ghouati, H. Lenoir, J.C. Gelin, Optimisation de procédés en emboutissage des tôles, in: Peseux et al. (Eds.), 4ième Col. Nat. Calcul des Structures, CSMA Teknea, 1999, pp. 407-412.
Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning (1989), Addison-Wesley Publishing Company Inc.
Grediac M., and Vautrin A. A new method for determination of bending rigidities of thin anisotropic plates. J. Appl. Mech. 57 (1990) 964-968
I. Gresovnik, Inverse. Software for solving optimization and inverse problems. Available from: .
Gresovnik I., and Rodic T. A general-purpose shell for solving inverse and optimization problems in metal forming. 2d ESAFORM Conference on Material Forming (1998), Guimares, Portugal 497-500
Guo Y.Q., Batoz J.-L., Naceur H., Bouabdallah S., Mercier F., and Barlet O. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Comput. Struct. 78 (2000) 133-148
Holzapfel G.A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering (2000), J. Wiley & sons
Huber N., and Tsakmakis Ch. A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comput. Methods Appl. Mech. Engrg. 191 (2001) 353-384
Kleiber M. Shape and non-shape structural sensitivity analysis for problems with any material and kinematic non-linearity. Comput. Methods Appl. Mech. Engrg. 108 1-2 (1993) 73-97
Kleiber M., and Kowalczyk P. Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity. Comput. Methods Appl. Mech. Engrg. 137 (1996) 395-409
J.P. Kleinermann, Identification paramétrique et optimisation des procédés de mise a forme par problemes inverses, Ph.D. thesis, Université de Liège, September 2000, (In French).
Kleinermann J.P., and Ponthot J.P. Parameter identification and shape/process optimization in metal forming simulation. J. Mater. Process. Technol. 139 (2003) 521-526
Kopp R., and Philipp F.D. Physical parameter and boundary conditions for the simulation of hot forming processes. Steel Res. 9 (1992) 392-398
Kowalczyk P., and Kleiber M. Shape sensitivity elasto-plastic computations. Comput. Methods Appl. Mech. Engrg. 171 (1999) 371-386
Lagaros N.D., Papadrakakis M., and Kokossalakis G. Structural optimization using evolutionary algorithms. Comput. Struct. 80 (2002) 571-589
Lagaros N.D., Plevris V., and Papadrakakis M. Multi-objective design optimization using cascade evolutionary computations. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3496-3515
Laumanns M., Thiele L., Deb K., and Zitzler E. Combining convergence and diversity in evolutionary multi-objective optimization. Evolution. Comput. 10 3 (2002) 262-282
Li B., Lin J., and Yao X. A novel evolutionary algorithm for determining unified creep damage constitutive equations. Int. J. Mech. Sci. 44 (2002) 987-1002
Liu G.R., Lee J.H., Patera A.T., Yang Z.L., and Lam K.Y. Inverse identification of thermal parameters using reduced-basis method. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3090-3107
Lucke H.U., Hartl Ch., and Abbey T. Hydroforming. J. Mater. Process. Technol. 115 (2001) 87-91
Mahnken R. A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification. Comput. Struct. 74 2 (1999) 179-200
Mahnken R., and Stein E. Gradient-based methods for parameter identification of viscoplastic material. 2nd International Symposium on Inverse Problems (1994), Balkema, Rotterdam 137-144
Mahnken R., and Stein E. The parameter identification for visco-plastic models via finite element method and gradient-methods. Model. Simul. Mater. Sci. Engrg. 2 (1994) 597-616
Mahnken R., and Stein E. A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Engrg. 136 (1996) 225-258
Mahnken R., and Stein E. Concepts and computational methods for parameter identification of inelastic material models. In: Onate E., Owen D.R.J., and Hinton E. (Eds). Computational Plasticity, Fundamentals and Applications (1997), CIMNE, Barcelona
Mahnken R., and Stein E. Parameter identification for finite deformation elasto-plasticity in principal directions. Comput. Methods Appl. Mech. Engrg. 147 (1997) 17-39
Moal A., Massoni E., and Chenot J.L. A finite element model for the simulation of the torsion and torsion-tension tests. Comput. Methods Appl. Mech. Engrg. 103 (1993) 417-434
Mori K., Yamamoto M., and Osakada K. Determination of hammering sequence in incremental sheet metal forming using a genetic algorithm. J. Mater. Process. Technol. 60 (1996) 463-468
Morris A.J. Foundations of Structural Optimization. Numerical Methods in Engineering Series (1982), John Wiley and sons
Mroz Z., and Piekarski J. Sensitivity analysis and optimal design of non-linear structures. Int. J. Numer. Methods Engrg. 42 (1998) 1231-1262
Muller D., and Hartmann G. Identification of materials parameters for inelastic constitutive models using principles of biologic evolution. J. Engrg. Mater. Technol. 111 (1989) 299-305
Naceur H., Guo Y.Q., and Batoz J.-L. Blank optimization in sheet metal forming using an evolutionary algorithm. J. Mater. Process. Technol. 151 (2004) 183-191
Y. Nakamura, T. Ohata, T. Katayama, E. Nakamichi, Optimum die design for sheet metal forming process by finite element and discretized optimization methods, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Taylor & Francis, June 1998, pp. 787-792.
Nariman-Zadeh N., Darvizeh A., Jamali A., and Moeini A. Evolutionary design of generalized polunomial neural networks for modeling and prediction of explosive forming process. J. Mater. Process. Technol. 164-165 (2005) 1561-1571
Nielsen K.B., Jensen M.R., and Danckert J. Optimization of sheet metal forming processes using finite element simulations. Acta Metall. Sinica (English Letters) 13 2 (2000) 531-539
Norris D.M., Morran J.R.B., Scudde J.K., and Quinones D.F. A computer simulation of the tension test. J. Mech. Phys. Solids 26 (1978) 1-19
Padmanabhan K.A., Vasin R.A., and Enikeev F.U. Superplastic Flow: Phenomenology and Mechanics (2001), Springer
Papadrakakis M., and Lagaros N.D. Reliability based structural optimization using neural networksand Monte Carlo simulationstructural optimization using evolution strategies and neural networks. Comput. Methods Appl. Mech. Engrg. 191 32 (2002) 3491-3507
Papadrakakis M., and Lagaros N.D. Advanced solution methods in structural optimization based on evolution strategies. Engrg. Comput. 15 1 (1998) 12-34
Papadrakakis M., Lagaros N.D., and Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Comput. Methods Appl. Mech. Engrg. 156 (1998) 309-333
Papadrakakis M., Tsompanakis Y., and Lagaros N.D. Structural shape optimization using evolution strategies. Engrg. Optim. 31 (1999) 515-540
Patnaik S.N., Coroneos R.M., and Hopkins D.A. A cascade optimization strategy for solution of difficult design problems. Int. J. Numer. Methods Engrg. 40 (1997) 2257-2266
Patnaik S.N., Coroneos R.M., Guptill J.D., and Hopkins D.A. Comparative evaluation of different optimization algorithms for structural design applications. Int. J. Numer. Methods Engrg. 39 (1996) 1761-1774
Patnaik S.N., and Hopkins D.A. General-purpose optimization method for multidisciplinary design applications. Adv. Engrg. Software 31 (2000) 57-63
Patnaik S.N., Guptill J.D., and Hopkins D.A. Subproblem optimization with regression and neural netwok approximators. Comput. Method Appl. Mech. Engrg. 194 (2005) 3359-3373
Picart P., Ghouati O., and Gelin J.-C. Optimization of metal forming process parameters with damage minimization. J. Mater. Process. Technol. 80-81 (1998) 597-601
Pinho-da Cruz J., and Teixeira-Dias F. On the optimisation of viscoplastic constitutive modelling using a numerical feedback damping algorithm. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2191-2210
J.P. Ponthot, Traitement Unifié de la Mécanique des Milieux Continus Solides en Grandes Déformations par la Méthode des Eléments finis. Ph.D. thesis, Université de Liège. Available from: , 1995.
Ponthot J.P. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plasticity 18 1 (2002) 91-126
Ponthot J.P., and Kleinermann J.P. Optimization methods for initial/tool shape optimisation in metal forming processes. Int. J. Vehicle Des. 39 1/2 (2005) 14-24
Qu J., Jin Q.L., and Xu B.Y. Parameter identification for improved viscoplastic model considering dynamic recrystallization. Int. J. Plasticity 21 (2005) 1267-1302
Rodic T., and Gresovnik I. A computer system for solving inverse and optimization problems. Engrg. Comput. 15 7 (1998) 893-907
Rodic T., and Gresovnik I. Optimization of prestressing of cold forging tooling system. 2d International Conference on Inverse Problems in Engineering vol. 2 (1998), Engineering Foundation, New York
Rodic T., Gresovnik I., and Owen D.R.J. Application of error minimization concept to estimation of hardening in tension test. 4th International Conference on Computational Plasticity (1995), Pineridge Press, Swansea 779-786
T. Rodic, J. Korelc, I. Gresovnik, Inverse analyses and optimization of cold forging processes, in: 1st ESAFORM Conference on Material Forming, Sophia-Antipolis, France, 1998, pp. 255-258.
Roy S., Ghosh S., and Shivpuri R. Optimal design of process variables in multi-pass wire drawing by genetic algorithm. J. Manufact. Sci. Engrg., Trans. ASME 118 (1996) 244-251
Roy S., Ghosh S., and Shivpuri R. A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithm. Int. J. Mach. Tools Manufact. 37 1 (1997) 29-44
Schenk O., and Hillman M. Optimal design of metal forming die surfaces with evolution strategies. Comput. Struct. 82 (2004) 1695-1705
Schittkowski K. NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. (1985) 485-500
Schnur D., and Zabaras N. An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Engrg. 33 (1992) 2039-2057
M. Sebag, M. Sschoenauer, H. Maitournam, Identification de modèles rhéologiques par programmation génétique, in: la Presse Académique de l'Ouest, editor, Actes du troisième colloque national en Calcul des Structures, vol. 1, Giens, France, May 1997, pp. 177-182.
Siegert K., Haussermann M., Losch B., and Rieger R. Recent developments in hydroforming technology. J. Mater. Process. Technol. 98 (2000) 251-258
Simo J.C. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Comput. Method Appl. Mech. Engrg. 66 (1988) 199-219
Smith D.E., Tortorelli D.A., and Tucker III C.H. Analysis and sensitivity analysis for polymer injection and compression molding. Comput. Methods Appl. Mech. Engrg. 167 (1998) 325-344
Smith D.E., Tortorelli D.A., and Tucker III C.H. Optimal design for polymer extrusion, Part I: Sensitivity analysis for non-linear steady-state systems. Comput. Methods Appl. Mech. Engrg. 167 (1998) 283-302
Smith D.E., Tortorelli D.A., and Tucker III C.H. Optimal design for polymer extrusion, Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems. Comput. Methods Appl. Mech. Engrg. 167 (1998) 303-323
Srikhanth A., and Zabaras N. Shape optimization and preform design in metal forming processes. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1859-1901
Svanberg K. The method of moving asymptotes. A new method for structural optimization. Int. J. Numer. Methods Engrg. 24 (1987) 359-373
Svanvberg K. A globally convergent version of MMA without linesearch. In: Olhoff N., and Rovaznus G.I.N. (Eds). Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, ISSMO (1995), Elsevier Science Ltd., Oxford 9-16
Tortorelli D.A. Sensitivity analysis for non-linear constrained elastostatic systems. Int. J. Numer. Methods Engrg. 33 (1992) 1643-1660
Tortorelli D.A., and Michaleris P. Design sensitivity analysis: overview and review. Inverse Probl. Engrg. 1 (1994) 71-105
Tortorelli D.A., Michaleris P., and Vidal C.A. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with application to elastoplasticity. Int. J. Numer. Methods Engrg. 37 (1994) 2471-2499
Tortorelli D.A., Subramani G., and Lu Stephen C.Y. Sensitivity analysis for coupled thermoelastic systems. Int. J. Solids Struct. 27 12 (1991) 1477-1497
Tortorelli D.A., and Wabg Z. A systematic approach to shape sensitivity analysis. Int. J. Solids Struct. 30 9 (1993) 1181-1212
Van Veldhuizen D.A., and Lamont G.B. Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evolution. Comput. 8 2 (2000) 125-147
Vieilledent D., and Fourment L. Shape optimization of axisymmetric preform tools in forging using a direct differentiation method. Int. J. Numer. Methods Engrg. 52 (2001) 1301-1321
Zabaras N., Bao Y., Srikanth A., and Frazier W.G. A continuum lagrangian sensitivity analysis for metal forming processes with applications to die design problems. Int. J. Numer. Methods Engrg. 48 (2000) 679-720
Zhang L., and Subbarayan G. An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I. training procedures. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2873-2886
Zhang L., and Subbarayan G. An evaluation of back-propagation neural networks for the optimal design of structural systems: Part II. numerical evaluation. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2887-2904
W.H. Zhang, C. Fleury, Two-point based sequential convex approximations for structural optimization, in: M. Hogge, E. Dick (Eds.), 3ème Congrès National Belge de Mécanique Théorique et Appliquée, Université de Liège, May 1994.
Zhang W.H., and Fleury C. A modification of convex approximations methods for structural optimization. Comput. Struct. 64 1-4 (1997) 89-95
Zhao J., and Wang F. Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces. J. Mater. Process. Technol. 166 (2005) 387-391
Zhao K.M., and Lee J.K. Finite element analysis of the three-point bending of sheet metals. J. Mater. Process. Technol. 122 6-11 (2002)
Zillober C. A globally convergent version of the method of moving asymptotes. Struct. Optim. 6 (1993) 166-174
E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1999.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.