groundwater potential; machine learning; oasis; performance; spatial prediction; water supply; Computer Science (miscellaneous); Geography, Planning and Development; Renewable Energy, Sustainability and the Environment; Building and Construction; Environmental Science (miscellaneous); Energy Engineering and Power Technology; Hardware and Architecture; Computer Networks and Communications; Management, Monitoring, Policy and Law
Abstract :
[en] Water availability is a key factor in territorial sustainable development. Moreover, groundwater constitutes the survival element of human life and ecosystems in arid oasis areas. Therefore, groundwater potential (GWP) identification represents a crucial step for its management and sustainable development. This study aimed to map the GWP using ten algorithms, i.e., shallow models comprising: multilayer perceptron, k-nearest neighbor, decision tree, and support vector machine algorithms; hybrid models comprising: voting, random forest, adaptive boosting, gradient boosting (GraB), and extreme gradient boosting; and the deep learning neural network. The GWP inventory map was prepared using 884 binary data, with “1” indicating a high GWP and “0” indicating an extremely low GWP. Twenty-three GWP-influencing factors have been classified into numerical data using the frequency ration method. Afterwards, they were selected based on their importance and multi-collinearity tests. The predicted GWP maps show that, on average, only 11% of the total area was predicted as a very high GWP zone and 17% and 51% were estimated as low and very low GWP zones, respectively. The performance analyses demonstrate that the applied algorithms have satisfied the validation standards for both training and validation tests with an average area under curve of 0.89 for the receiver operating characteristic. Furthermore, the models’ prioritization has selected the GraB model as the outperforming algorithm for GWP mapping. This study provides decision support tools for sustainable development in an oasis area.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ouali, Lamya ; Laboratory of Engineering Sciences and Techniques, Geo-Resource Geo-Environment Geological and Oasis Heritage Research Team, Department of Geosciences, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco
Kabiri, Lahcen; Laboratory of Engineering Sciences and Techniques, Geo-Resource Geo-Environment Geological and Oasis Heritage Research Team, Department of Geosciences, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco
Namous, Mustapha ; Laboratory of Data Science for Sustainable Earth, Sultan Moulay Slimane University, Beni Mellal, Morocco
Hssaisoune, Mohammed ; Laboratory of Applied Geology and Geo-Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco ; Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
Abdelrahman, Kamal ; Department of Geology & Geophysics, College of Science, King Saud University, Riyadh, Saudi Arabia
Fnais, Mohammed S.; Department of Geology & Geophysics, College of Science, King Saud University, Riyadh, Saudi Arabia
Kabiri, Hichame; Laboratory of Artificial Intelligence, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
El Hafyani, Mohammed ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Oubaassine, Hassane; Laboratory of the Dynamics of the Lithosphere and the Genesis of Resources, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakech, Morocco
Arioua, Abdelkrim; Water Resources Management and Valorization and Remote Sensing Team, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
Bouchaou, Lhoussaine ; Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco ; International Water Research Institute, VI Polytechnic University, Ben Guerir, Morocco
Language :
English
Title :
Spatial Prediction of Groundwater Withdrawal Potential Using Shallow, Hybrid, and Deep Learning Algorithms in the Toudgha Oasis, Southeast Morocco
Deep thanks and gratitude to the Researchers Supporting Project number (RSP2023R351), King Saud University, Riyadh, Saudi Arabia for supporting this research article. The authors are grateful to the ABHGZR, ORMVAO, and ONEE for the supply of the necessary data, and they also wish to thank the three anonymous reviewers for their constructive comments.
Hssaisoune M. Bouchaou L. Sifeddine A. Bouimetarhan I. Chehbouni A. Moroccan Groundwater Resources and Evolution with Global Climate Changes Geosciences 2020 10 81 10.3390/geosciences10020081
Boudhar A. Ouatiki H. Bouamri H. Lebrini Y. Karaoui I. Hssaisoune M. Arioua A. Benabdelouahab T. Hydrological Response to Snow Cover Changes Using Remote Sensing over the Oum Er Rbia Upstream Basin, Morocco Advances in Science, Technology and Innovation Springer Cham, Switzerland 2020
Ouali L. Hssaisoune M. Kabiri L. Slimani M.M. El Mouquaddam K. Namous M. Arioua A. Ben Moussa A. Benqlilou H. Bouchaou L. Mapping of potential sites for rainwater harvesting structures using GIS and MCDM approaches: Case study of the Toudgha watershed, Morocco Euro-Mediterr. J. Environ. Integr. 2022 7 49 64 10.1007/s41207-022-00294-7
Khettouch A. Hssaisoune M. Maaziz M. Taleb A.A. Bouchaou L. Characterization of groundwater in the arid Zenaga plain: Hydrochemical and environmental isotopes approaches Groundw. Sustain. Dev. 2022 19 816 10.1016/j.gsd.2022.100816
Medici G. Langman J.B. Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA) Sustainability 2022 14 11349 10.3390/su141811349
Masoud A.M. Pham Q.B. Alezabawy A.K. Abu El-Magd S.A. Efficiency of Geospatial Technology and Multi-Criteria Decision Analysis for Groundwater Potential Mapping in a Semi-Arid Region Water 2022 14 882 10.3390/w14060882
United Nations The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible United Nations Paris, France 2022
Manna F. Kennel J. Parker B.L. Understanding mechanisms of recharge through fractured sandstone using high-frequency water-level-response data Hydrogeol. J. 2022 30 1599 1618 10.1007/s10040-022-02515-3
Talukdar S. Mallick J. Sarkar S.K. Roy S.K. Islam A.R.M.T. Praveen B. Naikoo M.W. Rahman A. Sobnam M. Novel hybrid models to enhance the efficiency of groundwater potentiality model Appl. Water Sci. 2022 12 1 22 10.1007/s13201-022-01571-0
Díaz-Alcaide S. Martínez-Santos P. Review: Advances in groundwater potential mapping Hydrogeol. J. 2019 27 2307 2324 10.1007/s10040-019-02001-3
Arabameri A. Pal S.C. Rezaie F. Nalivan O.A. Chowdhuri I. Saha A. Lee S. Moayedi H. Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques J. Hydrol. Reg. Stud. 2021 36 100848 10.1016/j.ejrh.2021.100848
Lee S. Hyun Y. Lee M.-J. Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea Sustainability 2019 11 1678 10.3390/su11061678
Park S. Kim J. The Predictive Capability of a Novel Ensemble Tree-Based Algorithm for Assessing Groundwater Potential Sustainability 2021 13 2459 10.3390/su13052459
Liu R. Li G. Wei L. Xu Y. Gou X. Luo S. Yang X. Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms J. Hydrol. 2022 610 127977 10.1016/j.jhydrol.2022.127977
Moodley T. Seyam M. Abunama T. Bux F. Delineation of groundwater potential zones in KwaZulu-Natal, South Africa using remote sensing, GIS and AHP J. Afr. Earth Sci. 2022 193 104571 10.1016/j.jafrearsci.2022.104571
Pandey P.C. Sharma L.K. Introduction to Natural Resource Monitoring Using Remote Sensing Technology Advances in Remote Sensing for Natural Resource Monitoring Springer Berlin, Germany 2021
Shit P.K. Bhunia G.S. Adhikary P.P. Dash C.J. Introduction to Groundwater and Society: Applications of Geospatial Technology Groundwater and Society Springer Cham, Switzerland 2021
Das S. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India Arab. J. Geosci. 2018 11 576 10.1007/s12517-018-3933-4
Maskooni E.K. Naghibi S. Hashemi H. Berndtsson R. Application of Advanced Machine Learning Algorithms to Assess Groundwater Potential Using Remote Sensing-Derived Data Remote Sens. 2020 12 2742 10.3390/rs12172742
Namous M. Hssaisoune M. Pradhan B. Lee C.-W. Alamri A. Elaloui A. Edahbi M. Krimissa S. Eloudi H. Ouayah M. et al. Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models Water 2021 13 2273 10.3390/w13162273
Naghibi S.A. Hashemi H. Berndtsson R. Lee S. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors J. Hydrol. 2020 589 125197 10.1016/j.jhydrol.2020.125197
Pham Q.B. Kumar M. Di Nunno F. Elbeltagi A. Granata F. Islam A.R.M.T. Talukdar S. Nguyen X.C. Ahmed A.N. Anh D.T. Groundwater level prediction using machine learning algorithms in a drought-prone area Neural Comput. Appl. 2022 34 10751 10773 10.1007/s00521-022-07009-7
Das R. Saha S. Spatial mapping of groundwater potentiality applying ensemble of computational intelligence and machine learning approaches Groundw. Sustain. Dev. 2022 18 100778 10.1016/j.gsd.2022.100778
Gómez-Escalonilla V. Martínez-Santos P. Martín-Loeches M. Preprocessing approaches in machine-learning-based groundwater potential mapping: An application to the Koulikoro and Bamako regions, Mali Hydrol. Earth Syst. Sci. 2022 26 221 243 10.5194/hess-26-221-2022
Hakim W.L. Nur A.S. Rezaie F. Panahi M. Lee C.-W. Lee S. Convolutional neural network and long short-term memory algorithms for groundwater potential mapping in Anseong, South Korea J. Hydrol. Reg. Stud. 2022 39 100990 10.1016/j.ejrh.2022.100990
Mosavi A. Hosseini F.S. Choubin B. Goodarzi M. Dineva A.A. Sardooi E.R. Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction Water Resour. Manag. 2020 35 23 37 10.1007/s11269-020-02704-3
Chen Y. Chen W. Pal S.C. Saha A. Chowdhuri I. Adeli B. Janizadeh S. Dineva A.A. Wang X. Mosavi A. Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential Geocarto Int. 2021 37 5564 5584 10.1080/10106049.2021.1920635
Liu H. Lang B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey Appl. Sci. 2019 9 4396 10.3390/app9204396
Sahour H. Gholami V. Vazifedan M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer J. Hydrol. 2020 591 125321 10.1016/j.jhydrol.2020.125321
Dominguez P. Benessaiah N. Multi-agentive transformations of rural livelihoods in mountain ICCAs: The case of the decline of community-based management of natural resources in the Mesioui agdals (Morocco) Quat. Int. 2017 437 165 175 10.1016/j.quaint.2015.10.031
Labbaf Khaneiki M. Territorial Water Cooperation in the Central Plateau of Iran Springer Cham, Switzerland 2019 9783030014940
Hejja Y. Baidder L. Ibouh H. Bba A.N. Soulaimani A. Gaouzi A. Maacha L. Fractures distribution and basement-cover interaction in a polytectonic domain: A case study from the Saghro Massif (Eastern Anti-Atlas, Morocco) J. Afr. Earth Sci. 2020 162 103694 10.1016/j.jafrearsci.2019.103694
Moratti G. Benvenuti M. Santo A.P. Laurenzi M.A. Braschi E. Tommasini S. New 40Ar–39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: Insights on late Mesozoic tectonics, sedimentation and magmatism Int. J. Earth Sci. 2018 107 2491 2515 10.1007/s00531-018-1609-7
Essafraoui B. Ferry S. Groshény D. Içame N. El Aouli H. Masrour M. Bulot L.G. Géraud Y. Aoutem M. Sequence stratigraphic architecture of marine to fluvial deposits across a passive margin (Cenomanian, Atlantic margin, Morocco, Agadir transect) Carnets Geol. 2015 15 137 172 10.4267/2042/56909
Meister C. Piuz A. Cavin L. Boudad L. Bacchia F. Ettachfini E.M. Benyoucef M. Late Cretaceous (Cenomanian-Turonian) ammonites from southern Morocco and south western Algeria Arab. J. Geosci. 2016 10 1 10.1007/s12517-016-2714-1
Ellero A. Ottria G. Malusà M.G. Ouanaimi H. Structural Geological Analysis of the High Atlas (Morocco): Evidences of a Transpressional Fold-Thrust Belt Tectonics-Recent Advances Intech Open London, UK 2012 10.5772/50071
Michard A. Soulaimani A. Ouanaimi H. Raddi Y. Brahim L.A. Rjimati E.-C. Baidder L. Saddiqi O. Saghro Group in the Ougnat Massif (Morocco), an evidence for a continuous Cadomian basin along the northern West African Craton C. R. Geosci. 2017 349 81 90 10.1016/j.crte.2017.01.001
Margat J. Le Haut Atlas Calcaire–(Hydrogéologie Du Maroc-Chap. VI-2) Notes et Mémoires Du Service. Géologique Du Maroc 1952 97 254 262
Margat J. Destombes J. Hollard H. Mémoire Explicatif de La Carte Hydrogéologique Au 1: 50000 de La Plaine Du Tafilalt Éditions du Service Géologique du Maroc Rabat, Marocco 1962
Ruhard J.P. Le Bassin Quaternaire Du Tafilalt Ressources En Eau Du Maroc Éditions du Service Géologique du Maroc Rabat, Marocco 1977 352 415
Bahaj T. Kacimi I. Hilali M. Kassou N. Mahboub A. Preliminary Study of the Groundwater Geochemistry in the Sub-desert Area in Morocco: Case of the Ziz-Ghris Basins Procedia Earth Planet. Sci. 2013 7 44 48 10.1016/j.proeps.2013.03.162
Baki S. Hilali M. Kacimi I. Mahboub A. Hydrogeological Characterization and Mapping of Water Resources in the Rheris Watershed (Southeast Morocco) Bull. l’Institut Sci. Sect. Sci. la Terre 2016 38 29 43
NASA/JAXA The Global Precipitation Mission Available online: https://giovanni.gsfc.nasa.gov (accessed on 1 July 2022)
Wang H. Gao J.E. Zhang M.-J. Li X.-H. Zhang S.-L. Jia L.-Z. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model Catena 2015 127 80 91 10.1016/j.catena.2014.12.014
Amano H. Iwasaki Y. Land Cover Classification by Integrating NDVI Time Series and GIS Data to Evaluate Water Circulation in Aso Caldera, Japan Int. J. Environ. Res. Public Health 2020 17 6605 10.3390/ijerph17186605
Grinevskii S.O. The effect of topography on the formation of groundwater recharge Mosc. Univ. Geol. Bull. 2014 69 47 52 10.3103/S0145875214010025
USDA Urban Hydrology for Small Watersheds United States Department of Agriculture Washington, DC, USA 1975
Kunkle S.H. Thames J.L. Techniques Hydrologiques de Conservation Des Terres et Des Eaux En Montagne FAO Rome, Italy 1976 9252001158/9789252001157
O’Brien R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors Qual. Quant. 2007 41 673 690 10.1007/s11135-006-9018-6
Zhou H. Wang X. Zhu R. Feature selection based on mutual information with correlation coefficient Appl. Intell. 2021 52 5457 5474 10.1007/s10489-021-02524-x
Mao Z. Shi S. Li H. Zhong J. Sun J. Landslide susceptibility assessment using triangular fuzzy number-analytic hierarchy processing (TFN-AHP), contributing weight (CW) and random forest weighted frequency ratio (RF weighted FR) at the Pengyang county, Northwest China Environ. Earth Sci. 2022 81 1 33 10.1007/s12665-021-10123-9
Jenks G.F. The Data Model Concept in Statistical Mapping Int. Yearb. Cartogr. 1967 7 186 190
Sarker I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions SN Comput. Sci. 2021 2 1 21 10.1007/s42979-021-00592-x 33778771
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain Psychol. Rev. 1958 65 386 408 10.1037/h0042519 13602029
Rumelhart D.E. Hinton G.E. Williams R.J. Learning representations by back-propagating errors Nature 1986 323 533 536 10.1038/323533a0
Farooq M.U. Zafar A.M. Raheem W. Jalees M.I. Hassan A.A. Assessment of Algorithm Performance on Predicting Total Dissolved Solids Using Artificial Neural Network and Multiple Linear Regression for the Groundwater Data Water 2022 14 2002 10.3390/w14132002
Kanj F. Sawaya R. Halwani J. Nehmeh N. Mercury prediction in groundwater of Naameh Landfill using an Artificial Neural Network (ANN) model Green Technol. Resil. Sustain. 2022 2 1 14 10.1007/s44173-022-00003-1
Fix E. Hodges J. Discriminatory Analysis Nonparametric Discrimination: Small Sample Performance. Technical Report University of California Berkeley, CA, USA 1952
Cover T. Hart P. Nearest neighbor pattern classification IEEE Trans. Inf. Theory 1967 13 21 27 10.1109/TIT.1967.1053964
Kombo O. Kumaran S. Sheikh Y. Bovim A. Jayavel K. Long-Term Groundwater Level Prediction Model Based on Hybrid KNN-RF Technique Hydrology 2020 7 59 10.3390/hydrology7030059
Aburub F. Hadi W. Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study Int. J. Comput. Electr. Autom. Control Inf. Eng. 2016 10 1621 1624
Breiman L. Friedman J.H. Olshen R.A. Stone C.J. Classification and Regression Trees Routledge London, UK 2017
Zhao Y. Li Y. Zhang L. Wang Q. Groundwater level prediction of landslide based on classification and regression tree Geodesy Geodyn. 2016 7 348 355 10.1016/j.geog.2016.07.005
Choubin B. Rahmati O. Soleimani F. Alilou H. Moradi E. Alamdari N. Regional Groundwater Potential Analysis Using Classification and Regression Trees Spatial Modeling in GIS and R for Earth and Environmental Sciences Elsevier Amsterdam, The Netherlands 2019
Bottou L. Vapnik V. Pattern Recognition Using Generalized Portrait Method Autom. Remont Contr. 1963 24 774 780
Cortes C. Vapnik V. Support-Vector Networks Mach. Learn. 1995 20 273 297 10.1007/BF00994018
Liu D. Mishra A.K. Yu Z. Lü H. Li Y. Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data J. Hydrol. 2021 603 126929 10.1016/j.jhydrol.2021.126929
Ijlil S. Essahlaoui A. Mohajane M. Essahlaoui N. Mili E.M. Van Rompaey A. Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System Remote Sens. 2022 14 2379 10.3390/rs14102379
Littlestone N. Warmuth M.K. The Weighted Majority Algorithm Inf. Comput. 1994 108 212 261 10.1006/inco.1994.1009
Saqlain M. Jargalsaikhan B. Lee J.Y. A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing IEEE Trans. Semicond. Manuf. 2019 32 171 182 10.1109/TSM.2019.2904306
Breiman L. Random forests Mach. Learn. 2001 45 5 32 10.1023/A:1010933404324
Freund Y. Schapire R.E. Experiments with a New Boosting Algorithm Proceedings of the 13th International Conference Machine Learning Bari, Italy 3–6 July 1996
Ridgeway G. The State of Boosting Comput. Sci. Stat. 1999 31
Chen T. Guestrin C. XGBoost: A Scalable Tree Boosting System Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, CA, USA 13–17 August 2016
Kingma D.P. Ba J.L. Adam: A Method for Stochastic Optimization Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings San Diego, CA, USA 7–9 May 2015
Pradhan A.M.S. Kim Y.-T. Shrestha S. Huynh T.-C. Nguyen B.-P. Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya Environ. Sci. Pollut. Res. 2020 28 18501 18517 10.1007/s11356-020-10646-x
Nwaila G.T. Zhang S.E. Bourdeau J.E. Negwangwatini E. Rose D.H. Burnett M. Ghorbani Y. Data-Driven Predictive Modeling of Lithofacies and Fe In-Situ Grade in the Assen Fe Ore Deposit of the Transvaal Supergroup (South Africa) and Implications on the Genesis of Banded Iron Formations Nat. Resour. Res. 2022 31 2369 2395 10.1007/s11053-022-10105-z
Sameen M.I. Pradhan B. Lee S. Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas Nat. Resour. Res. 2018 28 757 775 10.1007/s11053-018-9416-1
Phung V.H. Rhee E.J. A Deep Learning Approach for Classification of Cloud Image Patches on Small Datasets J. Inf. Commun. Converg. Eng. 2018 16 173 178 10.6109/jicce.2018.16.3.173
Ahmadi A. Olyaei M. Heydari Z. Emami M. Zeynolabedin A. Ghomlaghi A. Daccache A. Fogg G.E. Sadegh M. Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis Water 2022 14 949 10.3390/w14060949
Afrifa S. Zhang T. Appiahene P. Varadarajan V. Mathematical and Machine Learning Models for Groundwater Level Changes: A Systematic Review and Bibliographic Analysis Future Internet 2022 14 259 10.3390/fi14090259