Article (Scientific journals)
Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model (rd10).
Halfmann, Claas; Rüland, Thomas; Müller, Frank et al.
2023In Frontiers in Cellular Neuroscience, 17, p. 1258773
Peer Reviewed verified by ORBi
 

Files


Full Text
fncel-17-1258773 (1).pdf
Publisher postprint (7.9 MB)
Download
Annexes
Data Sheet 1 (1).pdf
(1.14 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
electrophysiology; patch-clamp; rd10 mouse model; retinitis pigmentosa; visual cortex; Cellular and Molecular Neuroscience
Abstract :
[en] Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.
Research center :
Systems Neurophysiology, Institute of Zoology, RWTH Aachen University
Disciplines :
Anatomy (cytology, histology, embryology...) & physiology
Author, co-author :
Halfmann, Claas;  Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
Rüland, Thomas;  Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany ; Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany ; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
Müller, Frank;  Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany ; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany ; Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
Jehasse, Kevin  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes et modélisation
Kampa, Björn M;  Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany ; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany ; Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany ; JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
Language :
English
Title :
Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model (rd10).
Publication date :
15 September 2023
Journal title :
Frontiers in Cellular Neuroscience
eISSN :
1662-5102
Publisher :
Frontiers Media SA, Switzerland
Volume :
17
Pages :
1258773
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft [DE]
Funding text :
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)−368482240/GRK2416 and GRK2610: Innoretvision.
Available on ORBi :
since 18 January 2024

Statistics


Number of views
10 (4 by ULiège)
Number of downloads
3 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBi