Essential tremor; Information theory; Intrinsic ignition framework; MR-Guided focused ultrasound; Transfer entropy; Ventral intermediate nucleus; Humans; Aged; Entropy; Magnetic Resonance Imaging/methods; Thalamus; Brain/diagnostic imaging; Tremor; Treatment Outcome; Essential Tremor/therapy; Brain; Magnetic Resonance Imaging; Neuroscience (all); Biophysics; Neurology (clinical); General Neuroscience
Abstract :
[en] Magnetic resonance-guided focused ultrasound (MRgFUS) lesioning of the ventralis intermedius nucleus (VIM) has shown promise in treating drug-refractory essential tremor (ET). It remains unknown whether focal VIM lesions by MRgFUS have broader restorative effects on information flow within the whole-brain network of ET patients. We applied an information-theoretical approach based on intrinsic ignition and the concept of transfer entropy (TE) to assess the spatiotemporal dynamics after VIM-MRgFUS. Eighteen ET patients (mean age 71.44 years) underwent repeated 3T resting-state functional magnetic resonance imaging combined with Clinical Rating Scale for Tremor (CRST) assessments one day before (T0) and one month (T1) and six months (T2) post-MRgFUS, respectively. We observed increased whole brain ignition-driven mean integration (IDMI) at T1 (p < 0.05), along with trend increases at T2. Further, constraining to motor network nodes, we identified significant increases in information-broadcasting (bilateral supplementary motor area (SMA) and left cerebellar lobule III) and information-receiving (right precentral gyrus) at T1. Remarkably, increased information-broadcasting in bilateral SMA was correlated with relative improvement of the CRST in the treated hand. In addition, causal TE-based effective connectivity (EC) at T1 showed an increase from right SMA to left cerebellar lobule crus II and from left cerebellar lobule III to right thalamus. In conclusion, results suggest a change in information transmission capacity in ET after MRgFUS and a shift towards a more integrated functional state with increased levels of global and directional information flow.
Disciplines :
Neurology
Author, co-author :
Lueckel, Julia M ✱; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany. Electronic address: s4juluec@uni-bonn.de
Upadhyay, Neeraj ✱; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
Purrer, Veronika; German Center for Neurodegenerative Diseases, Bonn, Germany, Department of Neurology, University Hospital Bonn, Bonn, Germany
Maurer, Angelika; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
Borger, Valeri; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
Radbruch, Alexander; German Center for Neurodegenerative Diseases, Bonn, Germany, Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
Attenberger, Ulrike; Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
Wuellner, Ullrich; German Center for Neurodegenerative Diseases, Bonn, Germany, Department of Neurology, University Hospital Bonn, Bonn, Germany
Panda, Rajanikant ✱; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Boecker, Henning ✱; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany, German Center for Neurodegenerative Diseases, Bonn, Germany. Electronic address: Henning.Boecker@ukbonn.de
✱ These authors have contributed equally to this work.
Language :
English
Title :
Whole-brain network transitions within the framework of ignition and transfer entropy following VIM-MRgFUS in essential tremor patients.
Louis, E.D., Ottman, R., Hauser, W.A., How common is the most common adult movement disorder? estimates of the prevalence of essential tremor throughout the world. Mov Disord 13:1 (1998), 5–10, 10.1002/mds.870130105.
Benito-León, J., How common is essential tremor?. Neuroepidemiology 32:3 (2009), 215–216, 10.1159/000195692.
Malkki, H., Movement disorders: novel genetic risk variants for essential tremor. Nat Rev Neurol, 12(12), 2016, 679, 10.1038/nrneurol.2016.176.
Benito-León, J., Louis, E.D., Clinical update: diagnosis and treatment of essential tremor. Lancet 369:9568 (2007), 1152–1154, 10.1016/S0140-6736(07)60544-3.
Louis, E.D., The primary type of tremor in essential tremor is kinetic rather than postural: cross-sectional observation of tremor phenomenology in 369 cases. Eur J Neurol 20:4 (2013), 725–727, 10.1111/j.1468-1331.2012.03855.x.
Louis, E.D., Clinical practice. Essential tremor. N Engl J Med 345:12 (2001), 887–891, 10.1056/NEJMcp010928.
Louis, E.D., Machado, D.G., Tremor-related quality of life: a comparison of essential tremor vs. Parkinson's disease patients. Parkinsonism Relat Disorders 21:7 (2015), 729–735, 10.1016/j.parkreldis.2015.04.019.
Hirai, T., Jones, E.G., A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1 (1989), 1–34, 10.1016/0165-0173(89)90007-6.
Gallay, M.N., Jeanmonod, D., Liu, J., Morel, A., Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 212:6 (2008), 443–463, 10.1007/s00429-007-0170-0.
Jones, E.G., The thalamus. 2007, Cambridge University Press, Cambridge.
Klein, J.C., Barbe, M.T., Seifried, C., Baudrexel, S., Runge, M., Maarouf, M., et al. The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology 78:11 (2012), 787–795, 10.1212/WNL.0b013e318249f702.
Sakai, S.T., Cerebellar thalamic and thalamocortical projections. Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N., (eds.) Handbook of the cerebellum and cerebellar disorders, 2013, Springer, Dordrecht, 529–547.
Schuurman, P.R., Bosch, D.A., Bossuyt, P.M., Bonsel, G.J., van Someren, E.J., Bie, RM de, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:7 (2000), 461–468, 10.1056/NEJM200002173420703.
Zesiewicz, T.A., Elble, R., Louis, E.D., Hauser, R.A., Sullivan, K.L., Dewey, R.B., et al. Practice parameter: therapies for essential tremor: report of the quality standards subcommittee of the American academy of neurology. Neurology 64:12 (2005), 2008–2020, 10.1212/01.WNL.0000163769.28552.CD.
Haar, G ter, Coussios, C., High intensity focused ultrasound: physical principles and devices. Int J Hyperther 23:2 (2007), 89–104, 10.1080/02656730601186138.
Louis, E.D., Lee, M., Babij, R., Ma, K., Cortés, E., Vonsattel, J.-P.G., et al. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor. Brain 137:Pt 12 (2014), 3142–3148, 10.1093/brain/awu314.
Babij, R., Lee, M., Cortés, E., Vonsattel, J.-P.G., Faust, P.L., Louis, E.D., Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain 136:Pt 10 (2013), 3051–3061, 10.1093/brain/awt238.
Paris-Robidas, S., Brochu, E., Sintes, M., Emond, V., Bousquet, M., Vandal, M., et al. Defective dentate nucleus GABA receptors in essential tremor. Brain 135:Pt 1 (2012), 105–116, 10.1093/brain/awr301.
Benito-León, J., Louis, E.D., Essential tremor: emerging views of a common disorder. Nat Clin Pract Neurol 2:12 (2006), 666–678, 10.1038/ncpneuro0347 quiz 2pp. following 691.
Benito-León, J., Essential tremor: a neurodegenerative disease?. Tremor Other Hyperkinet Mov (N Y), 4, 2014, 252, 10.7916/D8765CG0.
Lenka, A., Bhalsing, K.S., Panda, R., Jhunjhunwala, K., Naduthota, R.M., Saini, J., et al. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor. Neuroradiology 59:2 (2017), 157–168, 10.1007/s00234-016-1771-1.
Yang, J., Du, Lei, Peng, J., Suo, X., Pinaya, W.H.L., Li, W., et al. Disrupted brain gray matter networks in drug-naïve participants with essential tremor. Neuroradiology 63:9 (2021), 1501–1510, 10.1007/s00234-021-02653-7.
Raethjen, J., Deuschl, G., The oscillating central network of Essential tremor. Clin Neurophysiol 123:1 (2012), 61–64, 10.1016/j.clinph.2011.09.024.
Buijink, A.W.G., van der Stouwe, A.M.M., Broersma, M., Sharifi, S., Groot, P.F.C., Speelman, J.D., et al. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain 138:Pt 10 (2015), 2934–2947, 10.1093/brain/awv225.
Schnitzler, A., Münks, C., Butz, M., Timmermann, L., Gross, J., Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord 24:11 (2009), 1629–1635, 10.1002/mds.22633.
Schnitzler, A., Gross, J., Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:4 (2005), 285–296, 10.1038/nrn1650.
Fang, W., Chen, H., Wang, H., Zhang, H., Puneet, M., Liu, M., et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus–Motor Cortex–Cerebellum circuit. Hum Brain Mapp 37:1 (2016), 165–178, 10.1002/hbm.23024.
Gallea, C., Popa, T., García-Lorenzo, D., Valabregue, R., Legrand, A.-P., Marais, L., et al. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain 138:Pt 10 (2015), 2920–2933, 10.1093/brain/awv171.
Mueller, K., Jech, R., Hoskovcová, M., Ulmanová, O., Urgošík, D., Vymazal, J., et al. General and selective brain connectivity alterations in essential tremor: a resting state fMRI study. Neuroimage Clin 16 (2017), 468–476, 10.1016/j.nicl.2017.06.004.
Quian Quiroga, R., Panzeri, S., Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10:3 (2009), 173–185, 10.1038/nrn2578.
Dimitrov, A.G., Lazar, A.A., Victor, J.D., Information theory in neuroscience. J Comput Neurosci 30:1 (2011), 1–5, 10.1007/s10827-011-0314-3.
Waltermann, C., Klipp, E., Information theory based approaches to cellular signaling. Biochim Biophys Acta 1810:10 (2011), 924–932, 10.1016/j.bbagen.2011.07.009.
Deco, G., Kringelbach, M.L., Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84:5 (2014), 892–905, 10.1016/j.neuron.2014.08.034.
Deco, G., Kringelbach, M.L., Hierarchy of information processing in the brain: a novel 'intrinsic ignition' framework. Neuron 94:5 (2017), 961–968, 10.1016/j.neuron.2017.03.028.
Tognoli, E., Kelso, J.A.S., The metastable brain. Neuron 81:1 (2014), 35–48, 10.1016/j.neuron.2013.12.022.
Schreiber, Measuring information transfer. Phys Rev Lett 85:2 (2000), 461–464, 10.1103/PhysRevLett.85.461.
Rommel V. Ceguerra, Joseph T. Lizier, Albert Y. Zomaya. Information storage and transfer in the synchronization process in locally-connected networks.
Li, M., Han, Y., Aburn, M.J., Breakspear, M., Poldrack, R.A., Shine, J.M., et al. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput Biol, 15(10), 2019, e1006957, 10.1371/journal.pcbi.1006957.
Spinney, R.E., Lizier, J.T., Characterizing information-theoretic storage and transfer in continuous time processes. Phys Rev E, 98(1–1), 2018, 12314, 10.1103/PhysRevE.98.012314.
Mäki-Marttunen, V., Diez, I., Cortes, J.M., Chialvo, D.R., Villarreal, M., Disruption of transfer entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness. Front Neuroinf, 7, 2013, 24, 10.3389/fninf.2013.00024.
Friston, K.J., Functional and effective connectivity: a review. Brain Connect 1:1 (2011), 13–36, 10.1089/brain.2011.0008.
Vicente, R., Wibral, M., Lindner, M., Pipa, G., Transfer entropy–a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:1 (2011), 45–67, 10.1007/s10827-010-0262-3.
Pohl, E.D.R., Upadhyay, N., Kobeleva, X., Purrer, V., Maurer, A., Keil, V.C., et al. Coherent structural and functional network changes after thalamic lesions in essential tremor. Mov Disord, 2022, 10.1002/mds.29130.
Bhatia, K.P., Bain, P., Bajaj, N., Elble, R.J., Hallett, M., Louis, E.D., et al. Consensus statement on the classification of tremors. From the task force on tremor of the international Parkinson and movement disorder society. Mov Disord 33:1 (2018), 75–87, 10.1002/mds.27121.
Fahn, S., Tolosa, E., Marin, C., Clinical Rating Scale for Tremor 2 (1988), 271–280.
Elble, R., Bain, P., Forjaz, M.J., Haubenberger, D., Testa, C., Goetz, C.G., et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord 28:13 (2013), 1793–1800, 10.1002/mds.25648.
Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N., Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122 (2015), 1–5, 10.1016/j.neuroimage.2015.07.075.
Deco, G., Tagliazucchi, E., Laufs, H., Sanjuán, A., Kringelbach, M.L., Novel intrinsic ignition method measuring local-global integration characterizes Wakefulness and deep sleep. eNeuro, 4(5), 2017, 10.1523/ENEURO.0106-17.2017 ENEURO.0106-17.2017.
Glerean, E., Salmi, J., Lahnakoski, J.M., Jääskeläinen, I.P., Sams, M., Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect 2:2 (2012), 91–101, 10.1089/brain.2011.0068.
Martino, M., Magioncalda, P., Huang, Z., Conio, B., Piaggio, N., Duncan, N.W., et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci U S A 113:17 (2016), 4824–4829, 10.1073/pnas.1517558113.
Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front Physiol, 3, 2012, 15, 10.3389/fphys.2012.00015.
La Pava Panche, I de, Alvarez-Meza, A.M., Orozco-Gutierrez, A., A data-driven measure of effective connectivity based on Renyi's α-entropy. Front Neurosci, 13, 2019, 1277, 10.3389/fnins.2019.01277.
Wu, Z., Chen, X., Gao, M., Hong, M., He, Z., Hong, H., et al. Effective connectivity extracted from resting-state fMRI images using transfer entropy. IRBM 42:6 (2021), 457–465, 10.1016/j.irbm.2021.02.007.
Blair, R.C., Karniski, W., An alternative method for significance testing of waveform difference potentials. Psychophysiology 30:5 (1993), 518–524, 10.1111/j.1469-8986.1993.tb02075.x.
Sporns, O., Zwi, J.D., The small world of the cerebral cortex. NI, vol. 2, 2004, 145–162, 10.1385/NI:2:2:145 2.
Jang, C., Park, H.-J., Chang, W.S., Pae, C., Chang, J.W., Immediate and longitudinal alterations of functional networks after thalamotomy in essential tremor. Front Neurol, 7, 2016, 184, 10.3389/fneur.2016.00184.
Bhardwaj, S., Panda, R., Bharath, R.D., Stezin, A., Khokhar, S.K., Prasad, S., et al. Single session of rTMS enhances brain metastability and intrinsic ignition. 2022.
Revuelta, G., McGill, C., Jensen, J.H., Bonilha, L., Characterizing thalamo-cortical structural connectivity in essential tremor with diffusional Kurtosis imaging tractography, vol. 9, 2019, Tremor Other Hyperkinet Mov (N Y), 10.7916/tohm.v0.690.
Akram, H., Dayal, V., Mahlknecht, P., Georgiev, D., Hyam, J., Foltynie, T., et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 18 (2018), 130–142, 10.1016/j.nicl.2018.01.008.
Dum, R.P., Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:6 (2005), 1375–1386, 10.1523/JNEUROSCI.3902-04.2005.
Nicoletti, V., Cecchi, P., Pesaresi, I., Frosini, D., Cosottini, M., Ceravolo, R., Cerebello-thalamo-cortical network is intrinsically altered in essential tremor: evidence from a resting state functional MRI study. Sci Rep, 10(1), 2020, 16661, 10.1038/s41598-020-73714-9.
Stanziano, M., Golfrè Andreasi, N., Messina, G., Rinaldo, S., Palermo, S., Verri, M., et al. Resting state functional connectivity signatures of MRgFUS vim thalamotomy in Parkinson's disease: a preliminary study. Front Neurol, 12, 2021, 786734, 10.3389/fneur.2021.786734.