Baccini, A., Laporte, N., Goetz, S.J., Sun, M., Dong, H., A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environ. Res. Lett., 3(4), 2008, 045011.
Bohlinger, P., Sorteberg, A., Sodemann, H., Synoptic conditions and moisture sources actuating extreme precipitation in Nepal. J. Geophys. Res. Atmos., 122(23), 2017.
Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., Asner, G.P., An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206 (2018), 156–173.
Bueso, D., Piles, M., Ciais, P., Wigneron, J.P., Moreno-Martínez, Á., Camps-Valls, G., Soil and vegetation water content identify the main terrestrial ecosystem changes. Natl. Sci. Rev., 10(5), 2023 (nwad026).
Chaparro, D., Vayreda, J., Vall-Llossera, M., Banqué, M., Piles, M., Camps, A., Martinez-Vilalta, J., The role of climatic anomalies and soil moisture in the decline of drought-prone forests. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10:2 (2016), 503–514.
Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-Llossera, M., Camps, A., Entekhabi, D., Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices. Remote Sens. Environ., 232, 2019, 111303.
Chaparro, D., Jagdhuber, T., Piles, M., Entekhabi, D., Jonard, F., Fluhrer, A., Camps, A., Global L-band vegetation volume fraction estimates for modeling vegetation optical depth. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, IEEE, 6399–6402 July.
Chaparro, D., Feldman, A.F., Chaubell, M.J., Yueh, S.H., Entekhabi, D., Robustness of vegetation optical depth retrievals based on L-band global radiometry. IEEE Trans. Geosci. Remote Sens. 60 (2022), 1–17.
Chuvieco, E., Riaño, D., Aguado, I., Cocero, D., Estimation of fuel moisture content from multitemporal analysis of Landsat thematic mapper reflectance data: applications in fire danger assessment. Int. J. Remote Sens. 23:11 (2002), 2145–2162.
Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martinez Vega, J., De La Riva, J., Perez, F., Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 92:3 (2004), 322–331.
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, Zamora, R., Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 221:1 (2010), 46–58.
Cloude, S.R., Polarization Application in Remote Sensing. 2010, Oxford University Press, Oxford.
Couvreur, V., Ledder, G., Manzoni, S., Way, D.A., Muller, E.B., Russo, S.E., Water transport through tall trees: a vertically explicit, analytical model of xylem hydraulic conductance in stems. Plant Cell Environ. 41:8 (2018), 1821–1839.
Das, N., Entekhabi, D., Dunbar, S., Chaubell, J., Colliander, A., Yueh, S., Thibeault, M., The SMAP and Copernicus sentinel 1A/B microwave active-passive high-resolution surface soil moisture product. Remote Sens. Environ., 233, 2019, 111380.
Das, N., Entekhabi, D., Dunbar, R.S., Kim, S., Yueh, S., Colliander, A., Cosh, M., SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 Km EASE-Grid Soil Moisture, Version 3. 2020, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 10.5067/ASB0EQO2LYJV. [20-04-2022].
De Loor, G.P., Dielectric properties of heterogeneous mixtures containing water. J. Microwave Power 3 (1968), 67–73.
Dennison, P.E., Roberts, D.A., Peterson, S.H., Rechel, J., Use of normalized difference water index for monitoring live fuel moisture. Int. J. Remote Sens. 26:5 (2005), 1035–1042.
Donlon, C.J., The Copernicus Imaging Microwave Radiometer (CIMR) Mission Requirements Document v5. 0. 2023, ESA, Paris, France https://cimr.eu/mrd_v5.
Duché, Y., Savazzi, R., Toutchkov, M., Cabanne, E., Multisite and multispecies live fuel moisture content (LFMC) series in the French Mediterranean since 1996 [data set]. Zenodo., 2017, 10.5281/zenodo.162978.
Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Van Zyl, J., The soil moisture active passive (SMAP) mission. Proc. IEEE 98:5 (2010), 704–716, 10.1109/JPROC.2010.2043918.
Fan, L., Wigneron, J.-P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-StPaul, N., Kerr, Y.H., Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens. Environ. 205 (2018), 210–223.
Feldman, A.F., Akbar, R., Entekhabi, D., Characterization of higher-order scattering from vegetation with SMAP measurements. Remote Sens. Environ. 219 (2018), 324–338.
Feldman, A., Konings, A., Piles, M., Entekhabi, D., The multi-temporal dual channel algorithm (MT-DCA) (version 5) [data set]. Zenodo., 2021, 10.5281/zenodo.5579549.
Fink, A., Jagdhuber, T., Piles, M., Grant, J., Baur, M., Link, M., Entekhabi, D., Estimating gravimetric moisture of vegetation using an attenuation-based multi-sensor approach. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, 353–356.
Forkel, M., Schmidt, L., Zotta, R.-M., Dorigo, W., Yebra, M., Leaf moisture content (live-fuel moisture content) at global scale from passive microwave satellite observations of vegetation optical depth (VOD2LFMC) (version 01) [data set]. Zenodo., 2022, 10.5281/zenodo.6545571.
Forkel, M., Schmidt, L., Zotta, R.-M., Dorigo, W., Yebra, M., Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth. Hydrol. Earth Syst. Sci. 27:1 (2023), 39–68.
Gentine, P., Green, J.K., Guérin, M., Humphrey, V., Seneviratne, S.I., Zhang, Y., Zhou, S., Coupling between the terrestrial carbon and water cycles—a review. Environ. Res. Lett., 14(8), 2019, 083003.
Grant, J., Wigneron, J.-P., Williams, M., Scholze, M., Kerr, Y., Working towards a global-scale vegetation water product from SMOS optical depth. 2014 IEEE Geoscience and Remote Sensing Symposium, 2014, 286–289.
Holtzman, N.M., Anderegg, L.D., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Konings, A.G., L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18:2 (2021), 739–753.
Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Shimoda, H., Global change observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE 98:5 (2010), 717–734.
Jackson, T.J., Schmugge, T.J., Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36:3 (1991), 203–212.
Jagdhuber, T., Jonard, F., Fluhrer, A., Chaparro, D., Baur, M.J., Meyer, T., Piles, M., Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study. Biogeosciences 19:8 (2022), 2273–2294.
Jia, S., Kim, S.H., Nghiem, S.V., Kafatos, M., Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA. Remote Sens., 11(13), 2019, 1575.
Jonard, F., Feldman, A.F., Short Gianotti, D.J., Entekhabi, D., Observed water and light limitation across global ecosystems. Biogeosciences 19:23 (2022), 5575–5590.
Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Spencer, R.W., The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens. 41:2 (2003), 184–194.
Kellogg, K., Hoffman, P., Standley, S., Shaffer, S., Rosen, P., Edelstein, W., Sarma, C.V.H.S., NASA-ISRO synthetic aperture radar (NISAR) mission. In 2020 IEEE Aerospace Conference, 2020, IEEE, 1–21 March.
Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Mecklenburg, S., The SMOS Mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98:5 (2010), 666–687.
Kim, Y., van Zyl, J., On the relationship between polarimetric parameters. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), 3, 2000, July, IEEE, 1298–1300.
Koike, T., Njoku, E., Jackson, T.J., Paloscia, S., Soil moisture algorithm development and validation for the ADEOS-II/AMSR. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), 3, 2000, July, IEEE, 1253–1255.
Konings, A.G., Gentine, P., Global variations in ecosystem-scale isohydricity. Glob. Chang. Biol. 23:2 (2017), 891–905.
Konings, A.G., Piles, M., Rötzer, K., McColl, K.A., Chan, S.K., Entekhabi, D., Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sens. Environ. 172 (2016), 178–189.
Konings, A.G., Rao, K., Steele-Dunne, S.C., Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 223:3 (2019), 1166–1172.
Konings, A.G., Saatchi, S.S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W.R., Zuidema, P.A., Detecting forest response to droughts with global observations of vegetation water content. Glob. Chang. Biol. 27:23 (2021), 6005–6024.
Lang, N., Jetz, W., Schindler, K., Wegner, J.D., A High-Resolution Canopy Height Model of the Earth. arXiv preprint arXiv:2204.08322, 2022.
Li, Z., Zeng, J., Chen, Q., Bi, H., The measurement and model construction of complex permittivity of vegetation. Sci. China Earth Sci. 57:4 (2014), 729–740.
Liu, Y.Y., Van Dijk, A.I., De Jeu, R.A., Canadell, J.G., McCabe, M.F., Evans, J.P., Wang, G., Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5:5 (2015), 470–474.
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., Rao, Y.S., Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ., 247, 2020, 111954.
Martinez-Vilalta, J., Anderegg, W.R.L., Sapes, G., Sala, A., Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol. 223:1 (2019), 22–32.
Matzler, C., Microwave (1-100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens. 32:4 (1994), 947–949.
Meyer, T., Jagdhuber, T., Piles, M., Fink, A., Grant, J., Vereecken, H., Jonard, F., Estimating gravimetric water content of a winter wheat field from L-band vegetation optical depth. Remote Sens., 11(20), 2019, 2353.
Miralles, D.G., Gentine, P., Seneviratne, S.I., Teuling, A.J., Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436:1 (2019), 19–35.
Mo, T., Choudhury, B.J., Schmugge, T.J., Wang, J.R., Jackson, T.J., A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Oceans 87:C13 (1982), 11229–11237.
Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., Forkel, M., The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12:1 (2020), 177–196.
Myoung, B., Kim, S., Nghiem, S., Jia, S., Whitney, K., Kafatos, M., Estimating live fuel moisture from MODIS satellite data for wildfire danger assessment in Southern California USA. Remote Sens., 10(2), 2018, 87.
Olivares-Cabello, C., Chaparro, D., Vall-llossera, M., Camps, A., López-Martínez, C., Global unsupervised assessment of multifrequency vegetation optical depth sensitivity to vegetation cover. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 16 (2022), 538–552.
O'Neill, P.E., Chan, S., Njoku, E.G., Jackson, T., Bindlish, R., Chaubell, J., SMAP Enhanced L3 Radiometer Global Daily 9 Km EASE-Grid Soil Moisture, Version 4 [Data Set]. 2020, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 10.5067/NJ34TQ2LFE90. Date Accessed 06-06-2023.
Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S., Haarpaintner, J., Su, B., The copernicus L-band SAR mission ROSE-L (radar observing system for Europe) (conference presentation). In Active and Passive Microwave Remote Sensing for Environmental Monitoring III, vol. 11154, 2019, SPIE, 111540E October.
Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger, C., Walker, J., Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans. Geosci. Remote Sens. 49:9 (2011), 3156–3166.
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Hofton, M., Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ., 253, 2021, 112165.
Rao, K., Anderegg, W.R., Sala, A., Martínez-Vilalta, J., Konings, A.G., Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sens. Environ. 227 (2019), 125–136.
Rao, K., Williams, A.P., Flefil, J.F., Konings, A.G., SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ., 245, 2020, 111797.
Rigden, A.J., Mueller, N.D., Holbrook, N.M., Pillai, N., Huybers, P., Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1:2 (2020), 127–133.
Rodríguez-Fernández, N.J., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, A., Wigneron, J.P., An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 15:14 (2018), 4627–4645.
Santi, E., Paloscia, S., Pampaloni, P., Pettinato, S., Nomaki, T., Seki, M., Maeda, T., Vegetation water content retrieval by means of multifrequency microwave acquisitions from AMSR2. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10:9 (2017), 3861–3873.
Schmidt, L., Forkel, M., Zotta, R.M., Scherrer, S., Dorigo, W.A., Kuhn-Régnier, A., Yebra, M., Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties. Biogeosciences 20:5 (2023), 1027–1046.
Schmugge, T.J., Jackson, T.J., A dielectric model of the vegetation effects on the microwave emission from soils. IEEE Trans. Geosci. Remote Sens. 30:4 (1992), 757–760.
Simard, M., Pinto, N., Fisher, J.B., Baccini, A., Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci., 116(G4), 2011.
Szigarski, C., Jagdhuber, T., Baur, M., Thiel, C., Parrens, M., Wigneron, J.-P., Entekhabi, D., Analysis of the radar vegetation index and potential improvements. Remote Sens., 10(11), 2018, 1776.
Teubner, I.E., Forkel, M., Jung, M., Liu, Y.Y., Miralles, D.G., Parinussa, R., Dorigo, W.A., Assessing the relationship between microwave vegetation optical depth and gross primary production. Int. J. Appl. Earth Obs. Geoinf. 65 (2018), 79–91.
Togliatti, K., Hartman, T., Walker, V.A., Arkebauer, T.J., Suyker, A.E., VanLoocke, A., Hornbuckle, B.K., Satellite L–band vegetation optical depth is directly proportional to crop water in the US Corn Belt. Remote Sens. Environ., 233, 2019, 111378.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Rostan, F., GMES Sentinel-1 mission. Remote Sens. Environ. 120 (2012), 9–24.
Ulaby, F., El-Rayes, M., Microwave dielectric spectrum of vegetation - part II: dual-dispersion model. IEEE Trans. Geosci. Remote Sens. GE-25:5 (1987), 550–557.
Ulaby, F.T., Razani, M., Dobson, M.C., Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Trans. Geosci. Remote Sens. GE-21:1 (1983), 51–61.
Ulaby, F.T., Long, D.G., Blackwell, W.J., Elachi, C., Fung, A.K., Ruf, C., Sarabandi, K., Zebker, H.A., Van Zyl, J., Microwave Radar and Radiometric Remote Sensing. 2014, University of Michigan Press, Artech House, MI, USA.
Wigneron, J.P., Kerr, Y., Chanzy, A., Jin, Y.Q., Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sens. Environ. 46:1 (1993), 61–72.
Wright, J.S., Fu, R., Worden, J.R., Chakraborty, S., Clinton, N.E., Risi, Y., Yin, L., Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. 114:32 (2017), 8481–8486.
Xu, X., Konings, A.G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Moorcroft, P., Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. New Phytol. 231:1 (2021), 122–136.
Yang, H., Ciais, P., Frappart, F., Li, X., Brandt, M., Fensholt, R., Wigneron, J.P., Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 16 (2023), 886–892.
Yebra, M., Chuvieco, E., Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: solving the ill-posed inverse problem. Remote Sens. Environ. 113:11 (2009), 2403–2411.
Yebra, M., Quan, X., Riaño, D., Rozas Larraondo, P., Van Dijk, A.I.J.M., Cary, G.J., A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 212 (2018), 260–272.
Yebra, M., Scortechini, G., Badi, A., Beget, M.E., Boer, M.M., Bradstock, R., Ustin, S., Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci. Data, 6(1), 2019, 155.
Yu, Y., Notaro, M., Observed land surface feedbacks on the Australian monsoon system. Clim. Dyn. 54:5–6 (2020), 3021–3040.
Zemp, D.C., Schleussner, C.-F., Barbosa, H.M.J., van der Ent, R.J., Donges, J.F., Heinke, J., Rammig, A., On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14:23 (2014), 13337–13359.
Zweifel, R., Item, H., Häsler, R., Link between diurnal stem radius changes and tree water relations. Tree Physiol. 21:12−13 (2001), 869–877.