biomaterials; bone regeneration; hydroxyapatite; osteoconduction; Oral Surgery; Dentistry (all); General Dentistry
Abstract :
[en] [en] OBJECTIVES: This preclinical model study aims to evaluate the performance and safety of a novel hydroxyapatite biomaterial (Wishbone Hydroxyapatite, WHA) on guided bone regeneration compared to a commercially available deproteinized bovine bone mineral (Bio-Oss, BO).
MATERIAL AND METHODS: Twenty-four beagle dogs were allocated to three timepoint cohorts (4, 12, and 26 weeks) of eight animals each. In all animals, four critical-sized, independent wall mandibular defects were created (32 defects/cohort). Each animal received all four treatments, allocated randomly to separated defects: WHA + collagen membrane (M), BO + M, no treatment (Sham, Sh), and Sh + M. At each timepoint, the specimens were harvested for histologic and histomorphometric analyses to determine the newly formed bone and osteoconductivity.
RESULTS: At 4 weeks, bone regeneration was significantly higher for WHA + M (46.8%) when compared to BO + M (21.4%), Sh (15.1%), and Sh + M (23.1%) (p < 0.05); at 12 and 26 weeks, regeneration was similar for WHA and BO. Bone-to-material contact increased over time similarly for WHA + M and BO + M. From a safety point of view, inflammation attributed to WHA + M or BO + M was minimal; necrosis or fatty infiltrate was absent.
CONCLUSIONS: WHA + M resulted in higher bone regeneration rate than BO + M at 4 weeks. Both BO + M and WHA + M were more efficient than both Sh groups at all timepoints. Safety and biocompatibility of WHA was favorable and comparable to that of BO.
Disciplines :
Dentistry & oral medicine
Author, co-author :
Pinto De Carvalho, Bruno ; Centre Hospitalier Universitaire de Liège - CHU > > Service de parodontologie, chirurgie bucco-dentaire et chirurgie implantaire ; Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
Dory, Emilie; Wishbone SA, Liège, Belgium
Trus, Caroline ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie et génétique bactériennes ; Wishbone SA, Liège, Belgium
Pirson, Justine ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire ; Wishbone SA, Liège, Belgium
Germain, Loïc; Wishbone SA, Liège, Belgium
Lecloux, Geoffrey ; Centre Hospitalier Universitaire de Liège - CHU > > Service de parodontologie, chirurgie bucco-dentaire et chirurgie implantaire ; Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
Lambert, France ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service de parodontologie, chirurgie bucco-dentaire et chirurgie implantaire ; Department of Periodontology, Oro-Dental and Implant Surgery, Dental Biomaterial Research Unit, Liège, Belgium
Rompen, Eric ✱; Université de Liège - ULiège > Département des sciences dentaires > Chirurgie bucco-dentaire et parodontologie ; Wishbone SA, Liège, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Biological performance of a novel bovine hydroxyapatite in a guided bone regeneration model: A preclinical study in a mandibular defect in dogs.
This work was funded by Wishbone SA. Wishbone SA was involved in all stages of the conduct and analysis of the studies and covered the costs associated with the development and publishing of the present manuscript.This study was funded by Wishbone SA. E.D., J.P. and C.T. are currently employees of Wishbone SA. L.G. was an employee of Wishbone SA during the study. F.L., G.L. and E.R. are founders and shareholders of Wishbone SA, and E.R. is a founder and shareholder of Wishbone Cy; their contribution to the study was limited and neither of them were involved in the analysis and interpretation of the results. For the histological processing and performance analyses, this study was outsourced in GLP conditions. B.D.C. declares no competing interests.
Elani HW, Starr JR, Da Silva JD, Gallucci GO. Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. J Dent Res. 2018;97(13):1424-1430. doi:10.1177/0022034518792567
Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants. 2007;22(suppl):49-70.
Esposito M, Grusovin MG, Rees J, et al. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst Rev. 2010;3:CD008397. doi:10.1002/14651858.Cd008397
Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants. 2009;24(suppl):218-236.
Jepsen S, Schwarz F, Cordaro L, et al. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European workshop on periodontology on bone regeneration. J Clin Periodontol. 2019;46(suppl 21):277-286. doi:10.1111/jcpe.13121
Naenni N, Lim HC, Papageorgiou SN, Hämmerle CHF. Efficacy of lateral bone augmentation prior to implant placement: a systematic review and meta-analysis. J Clin Periodontol. 2019;46(suppl 21):287-306. doi:10.1111/jcpe.13052
Sanz-Sánchez I, Ortiz-Vigón A, Sanz-Martín I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta-analysis. J Dent Res. 2015;94(9 suppl):128s-142s. doi:10.1177/0022034515594780
Chappuis V, Rahman L, Buser R, Janner SFM, Belser UC, Buser D. Effectiveness of contour augmentation with guided bone regeneration: 10-year results. J Dent Res. 2018;97(3):266-274. doi:10.1177/0022034517737755
Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clin Oral Implants Res. 1999;10(4):278-288. doi:10.1034/j.1600-0501.1999.100404.x
Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin N Am. 2010;54(1):55-71. doi:10.1016/j.cden.2009.09.003
Shamsoddin E, Houshmand B, Golabgiran M. Biomaterial selection for bone augmentation in implant dentistry: a systematic review. J Adv Pharm Technol Res. 2019;10(2):46-50. doi:10.4103/japtr.JAPTR_327_18
Dasmah A, Thor A, Ekestubbe A, Sennerby L, Rasmusson L. Particulate vs. block bone grafts: three-dimensional changes in graft volume after reconstruction of the atrophic maxilla, a 2-year radiographic follow-up. J Craniomaxillofac Surg. 2012;40(8):654-659. doi:10.1016/j.jcms.2011.10.032
Esposito M, Felice P, Worthington HV. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst Rev. 2014;5:CD008397. doi:10.1002/14651858.CD008397.pub2
Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000. 2008;2000(47):172-192. doi:10.1111/j.1600-0757.2008.00251.x
Lambert F, Bacevic M, Layrolle P, Schüpbach P, Drion P, Rompen E. Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clin Oral Implants Res. 2017;28(10):e201-e207. doi:10.1111/clr.12986
Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials – from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-718. doi:10.1016/j.jcms.2012.01.002
Trajkovski B, Jaunich M, Müller WD, Beuer F, Zafiropoulos GG, Houshmand A. Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes. Materials (Basel). 2018;11(2):215. doi:10.3390/ma11020215
Berberi A, Samarani A, Nader N, et al. Physicochemical characteristics of bone substitutes used in oral surgery in comparison to autogenous bone. Biomed Res Int. 2014;2014:320790. doi:10.1155/2014/320790
Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry. Int J Biomater. 2013;2013:876132. doi:10.1155/2013/876132
Epple M, Ganesan K, Heumann R, et al. Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem. 2010;20(1):18-23. doi:10.1039/B910885H
Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474. doi:10.3389/fbioe.2020.00474
Gunduz O, Erkan EM, Daglilar S, Salman S, Agathopoulos S, Oktar FN. Composites of bovine hydroxyapatite (BHA) and ZnO. J Mater Sci. 2008;43(8):2536-2540. doi:10.1007/s10853-008-2497-1
Sanz M, Dahlin C, Apatzidou D, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European workshop on periodontology on bone regeneration. J Clin Periodontol. 2019;46(suppl 21):82-91. doi:10.1111/jcpe.13123
De Carvalho B, Rompen E, Lecloux G, et al. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials (Basel). 2019;12(23):3946. doi:10.3390/ma12233946
Lambert F, Léonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res. 2011;22(5):538-545. doi:10.1111/j.1600-0501.2010.02069.x
Baldini N, De Sanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery. Dent Mater. 2011;27(1):61-70. doi:10.1016/j.dental.2010.10.017
US FDA. Wishbone HA marketing authorization approval. 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf21/K211551.pdf
Rompen E, Lambert F, Lecloux G, Moniotte P. Materiau de regeneration osseuse et son procede de fabrication. Patent WO 2015/049336 A1(12). 2015.
US FDA. GEISTLICH BIO-OSS®. 510(k) Summary. 2013. https://www.accessdata.fda.gov/cdrh_docs/pdf12/k122894.pdf
Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139(2):663-670. doi:10.1210/endo.139.2.5751
International Organization for Standardization. ISO 10993-6:2016(en). Biological evaluation of medical devices—Part 6: Tests for local effects after implantation. 2016. https://www.iso.org/obp/ui#iso:std:iso:10993:-6:ed-3:v1:en
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi:10.3758/bf03193146
Weibrich G, Trettin R, Gnoth SH, Götz H, Duschner H, Wagner W. Determining the size of the specific surface of bone substitutes with gas adsorption. Mund Kiefer Gesichtschir. 2000;4(3):148-152. doi:10.1007/s100060050187
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(suppl 4):37-47. doi:10.1016/s0020-1383(00)80022-4
Habibovic P, Kruyt MC, Juhl MV, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res. 2008;26(10):1363-1370. doi:10.1002/jor.20648
Patel N, Gibson IR, Ke S, Best SM, Bonfield W. Calcining influence on the powder properties of hydroxyapatite. J Mater Sci Mater Med. 2001;12(2):181-188. doi:10.1023/a:1008986430940
Aquino-Martínez R, Artigas N, Gámez B, Rosa JL, Ventura F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One. 2017;12(5):e0178158. doi:10.1371/journal.pone.0178158
Kwon S-H, Jun Y-K, Hong S-H, Lee I-S, Kim H-E, Won YY. Calcium phosphate bioceramics with various porosities and dissolution rates. J Am Ceram Soc. 2002;85(12):3129-3131. doi:10.1111/j.1151-2916.2002.tb00599.x
Araújo M, Linder E, Lindhe J. Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clin Oral Implants Res. 2009;20(1):1-6. doi:10.1111/j.1600-0501.2008.01606.x
Cardaropoli G, Araújo M, Hayacibara R, Sukekava F, Lindhe J. Healing of extraction sockets and surgically produced – augmented and non-augmented – defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. 2005;32(5):435-440. doi:10.1111/j.1600-051X.2005.00692.x
Liu Q, Huang S, Matinlinna JP, Chen Z, Pan H. Insight into biological apatite: physiochemical properties and preparation approaches. Biomed Res Int. 2013;2013:929748. doi:10.1155/2013/929748
Lambert F, Leonard A, Lecloux G, Sourice S, Pilet P, Rompen E. A comparison of three calcium phosphate-based space fillers in sinus elevation: a study in rabbits. Int J Oral Maxillofac Implants. 2013;28(2):393-402. doi:10.11607/jomi.2332
Molly L, Vandromme H, Quirynen M, Schepers E, Adams JL, van Steenberghe D. Bone formation following implantation of bone biomaterials into extraction sites. J Periodontol. 2008;79(6):1108-1115. doi:10.1902/jop.2008.070476
Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10:81. doi:10.1186/1741-7015-10-81
Friedmann A, Gissel K, Soudan M, Kleber BM, Pitaru S, Dietrich T. Randomized controlled trial on lateral augmentation using two collagen membranes: morphometric results on mineralized tissue compound. J Clin Periodontol. 2011;38(7):677-685. doi:10.1111/j.1600-051X.2011.01738.x
Merli M, Moscatelli M, Mariotti G, Pagliaro U, Raffaelli E, Nieri M. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. Three-year post-loading results of a double-blind randomised controlled trial. Eur J Oral Implantol. 2018;11(4):441-452.
Aprile P, Letourneur D, Simon-Yarza T. Membranes for guided bone regeneration: a road from bench to bedside. Adv Healthc Mater. 2020;9(19):e2000707. doi:10.1002/adhm.202000707
Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567-576. doi:10.1111/j.1600-0501.2010.01922.x
Elnayef B, Porta C, Suárez-López Del Amo F, Mordini L, Gargallo-Albiol J, Hernández-Alfaro F. The fate of lateral ridge augmentation: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(3):622-635. doi:10.11607/jomi.6290
Chiba S, Anada T, Suzuki K, et al. Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. J Biomed Mater Res A. 2016;104(11):2833-2842. doi:10.1002/jbm.a.35828
Hannink G, Arts JJ. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011;42(suppl 2):S22-S25. doi:10.1016/j.injury.2011.06.008
Wach T, Kozakiewicz M. Fast-versus slow-resorbable calcium phosphate bone substitute materials-texture analysis after 12 months of observation. Materials (Basel). 2020;13(17):3854. doi:10.3390/ma13173854
Kim YJ, Saiki CET, Silva K, et al. Bone formation in grafts with Bio-Oss and autogenous bone at different proportions in rabbit Calvaria. Int J Dent. 2020;2020:2494128. doi:10.1155/2020/2494128
Lo Russo L, Caradonna G, Troiano G, Salamini A, Guida L, Ciavarella D. Three-dimensional differences between intraoral scans and conventional impressions of edentulous jaws: a clinical study. J Prosthet Dent. 2020;123(2):264-268. doi:10.1016/j.prosdent.2019.04.004