Article (Scientific journals)
How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
Fava, Mauro; Protik, Nakib Haider; Li, Chunhua et al.
2021In npj Computational Materials, 7 (1)
Peer Reviewed verified by ORBi
 

Files


Full Text
s41524-021-00519-3.pdf
Author postprint (1.21 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Design considerations; Fermi level pinning; First-principles calculation; First-principles study; General trends; High thermal conductivity; Neutral impurities; Ultrahigh-thermal-conductivity; Modeling and Simulation; Materials Science (all); Mechanics of Materials; Computer Science Applications; General Materials Science
Abstract :
[en] The promise enabled by boron arsenide’s (BAs) high thermal conductivity (κ) in power electronics cannot be assessed without taking into account the reduction incurred when doping the material. Using first principles calculations, we determine the κ reduction induced by different group IV impurities in BAs as a function of concentration and charge state. We unveil a general trend, where neutral impurities scatter phonons more strongly than the charged ones. CB and GeAs impurities show by far the weakest phonon scattering and retain BAs κ values of over ~1000 W⋅K−1⋅m−1 even at high densities. Both Si and Ge achieve large hole concentrations while maintaining high κ. Furthermore, going beyond the doping compensation threshold associated to Fermi level pinning triggers observable changes in the thermal conductivity. This informs design considerations on the doping of BAs, and it also suggests a direct way to determine the onset of compensation doping in experimental samples.
Disciplines :
Physics
Author, co-author :
Fava, Mauro   ;  Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Grenoble Alpes, Saint-Martin-d’Hères, France
Protik, Nakib Haider  ;  John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
Li, Chunhua;  Department of Physics, Boston College, Chestnut Hill, United States
Ravichandran, Navaneetha Krishnan;  Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
Carrete, Jesús ;  Institute of Materials Chemistry, TU Wien, Vienna, Austria
van Roekeghem, Ambroise;  CEA, LITEN, Grenoble, France
Madsen, Georg K. H. ;  Institute of Materials Chemistry, TU Wien, Vienna, Austria
Mingo, Natalio;  CEA, LITEN, Grenoble, France
Broido, David ;  Department of Physics, Boston College, Chestnut Hill, United States
 These authors have contributed equally to this work.
Language :
English
Title :
How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
Publication date :
April 2021
Journal title :
npj Computational Materials
eISSN :
2057-3960
Publisher :
Nature Research
Volume :
7
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ONR - Office of Naval Research
ANR - Agence Nationale de la Recherche
Funding text :
This work was supported in part by the Office of Naval Research under MURI grant no. N00014-16-1-2436, and the Agence Nationale de la Recherche through project ANR-17-CE08-0044-01. G.K.H.M. acknowledges funding from the Austrian Science Funds (FWF) under project CODIS (Grant no. FWF-I-3576-N36). We thank Nebil Katcho for providing us with the first version of the code used to compute the phonon-defect scattering rates. D.B. thanks Dr. John Lyons of the Naval Research Laboratory for helpful discussions.
Available on ORBi :
since 16 January 2024

Statistics


Number of views
13 (6 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
23
Scopus citations®
without self-citations
18
OpenCitations
 
15
OpenAlex citations
 
24

Bibliography


Similar publications



Contact ORBi