Design considerations; Fermi level pinning; First-principles calculation; First-principles study; General trends; High thermal conductivity; Neutral impurities; Ultrahigh-thermal-conductivity; Modeling and Simulation; Materials Science (all); Mechanics of Materials; Computer Science Applications; General Materials Science
Abstract :
[en] The promise enabled by boron arsenide’s (BAs) high thermal conductivity (κ) in power electronics cannot be assessed without taking into account the reduction incurred when doping the material. Using first principles calculations, we determine the κ reduction induced by different group IV impurities in BAs as a function of concentration and charge state. We unveil a general trend, where neutral impurities scatter phonons more strongly than the charged ones. CB and GeAs impurities show by far the weakest phonon scattering and retain BAs κ values of over ~1000 W⋅K−1⋅m−1 even at high densities. Both Si and Ge achieve large hole concentrations while maintaining high κ. Furthermore, going beyond the doping compensation threshold associated to Fermi level pinning triggers observable changes in the thermal conductivity. This informs design considerations on the doping of BAs, and it also suggests a direct way to determine the onset of compensation doping in experimental samples.
Disciplines :
Physics
Author, co-author :
Fava, Mauro ✱; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Grenoble Alpes, Saint-Martin-d’Hères, France
Protik, Nakib Haider ✱; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
Li, Chunhua; Department of Physics, Boston College, Chestnut Hill, United States
Ravichandran, Navaneetha Krishnan; Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
Carrete, Jesús ; Institute of Materials Chemistry, TU Wien, Vienna, Austria
van Roekeghem, Ambroise; CEA, LITEN, Grenoble, France
Madsen, Georg K. H. ; Institute of Materials Chemistry, TU Wien, Vienna, Austria
Mingo, Natalio; CEA, LITEN, Grenoble, France
Broido, David ; Department of Physics, Boston College, Chestnut Hill, United States
✱ These authors have contributed equally to this work.
Language :
English
Title :
How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
ONR - Office of Naval Research ANR - Agence Nationale de la Recherche
Funding text :
This work was supported in part by the Office of Naval Research under MURI grant no. N00014-16-1-2436, and the Agence Nationale de la Recherche through project ANR-17-CE08-0044-01. G.K.H.M. acknowledges funding from the Austrian Science Funds (FWF) under project CODIS (Grant no. FWF-I-3576-N36). We thank Nebil Katcho for providing us with the first version of the code used to compute the phonon-defect scattering rates. D.B. thanks Dr. John Lyons of the Naval Research Laboratory for helpful discussions.
Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018). DOI: 10.1126/science.aat5522
Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018). DOI: 10.1126/science.aat8982
Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018). DOI: 10.1126/science.aat7932
Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013). DOI: 10.1103/PhysRevLett.111.025901
Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017). DOI: 10.1103/PhysRevB.96.161201
Liu, T.-H. et al. Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs, and BSb. Phys. Rev. B 98, 081203 (2018). DOI: 10.1103/PhysRevB.98.081203
Kim, J. et al. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure. Appl. Phys. Lett. 108, 201905 (2016). DOI: 10.1063/1.4950970
Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015). DOI: 10.1063/1.4913441
Zheng, Q. et al. Antisite pairs suppress the thermal conductivity of BAs. Phys. Rev. Lett. 121, 105901 (2018). DOI: 10.1103/PhysRevLett.121.105901
Chae, S., Mengle, K., Heron, J. T. & Kioupakis, E. Point defects and dopants of boron arsenide from first-principles calculations: donor compensation and doping asymmetry. Appl. Phys. Lett. 113, 212101 (2018). DOI: 10.1063/1.5062267
Lyons, J. L. et al. Impurity-derived p-type conductivity in cubic boron arsenide. Appl. Phys. Lett. 113, 251902 (2018). DOI: 10.1063/1.5058134
Bushick, K., Mengle, K., Sanders, N. & Kioupakis, E. Band structure and carrier effective masses of boron arsenide: effects of quasiparticle and spin-orbit coupling corrections. Appl. Phys. Lett. 114, 022101 (2019). DOI: 10.1063/1.5062845
Ziman, J. Electrons and phonons: the theory of transport phenomena in solids. International series of monographs on physics (OUP Oxford, 2001).
Omini, M. & Sparavigna, A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53, 9064–9073 (1996). DOI: 10.1103/PhysRevB.53.9064
Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comp. Phys. Commun. 185, 1747–1758 (2014). DOI: 10.1016/j.cpc.2014.02.015
Mingo, N., Esfarjani, K., Broido, D. A. & Stewart, D. A. Cluster scattering effects on phonon conduction in graphene. Phys. Rev. B 81, 045408 (2010). DOI: 10.1103/PhysRevB.81.045408
Economou, E. N. Green’s functions in quantum physics (Springer, 2006). URL https://books.google.fr/books?id=s0gsAAAAYAAJ.
Lindsay, L., Broido, D. A. & Reinecke, T. L. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: a first-principles study. Phys. Rev. B 88, 144306 (2013). DOI: 10.1103/PhysRevB.88.144306
Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020). DOI: 10.1126/science.aaz6149
Tian, F. et al. Seeded growth of boron arsenide single crystals with high thermal conductivity. Appl. Phys. Lett. 112, 031903 (2018). DOI: 10.1063/1.5004200
Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016). DOI: 10.1103/PhysRevB.93.045202
Tamura, S.-i Isotope scattering of large-wave-vector phonons in GaAs and InSb: deformation-dipole and overlap-shell models. Phys. Rev. B 30, 849–854 (1984). DOI: 10.1103/PhysRevB.30.849
Walton, D. Phonon-defect interaction. (Springer US: Boston, MA, 1975) 393–440.
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). DOI: 10.1103/PhysRevB.47.558
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). DOI: 10.1103/PhysRevB.49.14251
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). DOI: 10.1103/PhysRevB.50.17953
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
Burke, K., Perdew, J. P. & Ernzerhof, M. Why semilocal functionals work: accuracy of the on-top pair density and importance of system averaging. J. Chem. Phys. 109, 3760–3771 (1998). DOI: 10.1063/1.476976
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015). DOI: 10.1016/j.scriptamat.2015.07.021
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106–134114 (2008). DOI: 10.1103/PhysRevB.78.134106
Katre, A., Carrete, J., Dongre, B., Madsen, G. K. H. & Mingo, N. Exceptionally strong phonon scattering by B substitution in cubic SiC. Phys. Rev. Lett. 119, 075902 (2017). DOI: 10.1103/PhysRevLett.119.075902
Li, W., Lindsay, L., Broido, D. A., Stewart, D. A. & Mingo, N. Thermal conductivity of bulk and nanowire Mg2Si xSn1−x alloys from first principles. Phys. Rev. B 86, 174307 (2012). DOI: 10.1103/PhysRevB.86.174307
Carrete, J. et al. almaBTE: a solver of the space-time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351–362 (2017). DOI: 10.1016/j.cpc.2017.06.023
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502