[en] The promise posed by half-Heusler compounds as thermoelectric materials depends on their thermal conductivity, which is strongly affected by doping. Here we elucidate the effect of p dopants on the lattice thermal conductivity (κph) of seven selected half-Heusler compounds and for twelve different substitutional defects. We unveil a strong reduction in κph even for low concentrations of transition-metal substitutional atoms. Furthermore, we quantify the strength of the bond perturbation induced by substitutional impurities and interpret it in terms of the changes in the local electronic density of states. In several cases we find a significant destructive interference between the mass difference and bond perturbations which reduces the phonon scattering rates below the value expected if the two effects were treated independently. We compare our first-principles calculations with the available experimental measurements on the thermal conductivity of (Zr,Hf)Nb-doped NbFeSb and SnSb-doped ZrCoSb. For the latter, including the effect of independent Co vacancies and interstitials yields an almost perfect agreement with experiment.
Disciplines :
Physics
Author, co-author :
Fava, Mauro ✱; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Grenoble Alpes, CEA, LITEN, Grenoble, France
Dongre, Bonny ✱; Institute of Materials Chemistry, TU Wien, Vienna, Austria
Carrete, Jesús ; Institute of Materials Chemistry, TU Wien, Vienna, Austria
Van Roekeghem, Ambroise ; Université Grenoble Alpes, CEA, LITEN, Grenoble, France
Madsen, Georg K. H. ; Institute of Materials Chemistry, TU Wien, Vienna, Austria
Mingo, Natalio ; Université Grenoble Alpes, CEA, LITEN, Grenoble, France
✱ These authors have contributed equally to this work.
Language :
English
Title :
Effects of doping substitutions on the thermal conductivity of half-Heusler compounds
ANR - Agence Nationale de la Recherche FWF - Austrian Science Fund
Funding text :
This work was supported by project CODIS (Agence Nationale de la Recherche project ANR-17-CE08-0044-01 and Austrian Science Funds (FWF) Grant No. FWF-I-3576-N36).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, International Series of Monographs on Physics (Oxford University Press, Oxford, 2001).
G. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer Series in Materials Science (Springer, Berlin, 2001).
C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015) 2041-1723 10.1038/ncomms9144.
H. Zhu, J. Mao, Y. Li, J. Sun, Y. Wang, Q. Zhu, G. Li, Q. Song, J. Zhou, Y. Fu, Nat. Commun. 10, 270 (2019) 10.1038/s41467-018-08223-5.
J. Zhou, H. Zhu, T.-H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D. J. Singh, Nat. Commun. 9, 1721 (2018) 10.1038/s41467-018-03866-w.
A. S. Sharma, S. Das, S. A. Gazi, and S. Dhar, J. Appl. Phys. 126, 155702 (2019) JAPIAU 0021-8979 10.1063/1.5120754.
G. Naydenov, P. Hasnip, V. Lazarov, and M. Probert, J. Phys.: Mater. 2, 035002 (2019) 2515-7639 10.1088/2515-7639/ab16fb.
J. Yang, G. P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 1140 (2004) APPLAB 0003-6951 10.1063/1.1783022.
A. Petersen, S. Bhattacharya, T. M. Tritt, and S. J. Poon, J. Appl. Phys. 117, 035706 (2015) JAPIAU 0021-8979 10.1063/1.4906225.
S. Bhattacharya, M. J. Skove, M. Russell, T. M. Tritt, Y. Xia, V. Ponnambalam, S. J. Poon, and N. Thadhani, Phys. Rev. B 77, 184203 (2008) PRBMDO 1098-0121 10.1103/PhysRevB.77.184203.
S. Bhattacharya and G. K. H. Madsen, J. Mater. Chem. C 4, 11261 (2016) 2050-7526 10.1039/C6TC04259G.
M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996) PRBMDO 0163-1829 10.1103/PhysRevB.53.9064.
D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007) APPLAB 0003-6951 10.1063/1.2822891.
W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comput. Phys. Commun. 185, 1747 (2014) CPHCBZ 0010-4655 10.1016/j.cpc.2014.02.015.
W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Phys. Rev. B 85, 195436 (2012) PRBMDO 1098-0121 10.1103/PhysRevB.85.195436.
A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, Phys. Rev. B 80, 125203 (2009) PRBMDO 1098-0121 10.1103/PhysRevB.80.125203.
N. H. Protik, J. Carrete, N. A. Katcho, N. Mingo, and D. Broido, Phys. Rev. B 94, 045207 (2016) 2469-9950 10.1103/PhysRevB.94.045207.
N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, Phys. Rev. B 81, 045408 (2010) PRBMDO 1098-0121 10.1103/PhysRevB.81.045408.
E. N. Economou, Green's Functions in Quantum Physics (Springer, Heidelberg, 2006).
A. Katre, J. Carrete, B. Dongre, G. K. H. Madsen, and N. Mingo, Phys. Rev. Lett. 119, 075902 (2017) PRLTAO 0031-9007 10.1103/PhysRevLett.119.075902.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) PRBMDO 0163-1829 10.1103/PhysRevB.47.558.
G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994) PRBMDO 0163-1829 10.1103/PhysRevB.49.14251.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996) PRBMDO 0163-1829 10.1103/PhysRevB.54.11169.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994) PRBMDO 0163-1829 10.1103/PhysRevB.50.17953.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999) PRBMDO 0163-1829 10.1103/PhysRevB.59.1758.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865.
K. Burke, J. P. Perdew, and M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998) JCPSA6 0021-9606 10.1063/1.476976.
A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015) SCMAF7 1359-6462 10.1016/j.scriptamat.2015.07.021.
A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008) PRBMDO 1098-0121 10.1103/PhysRevB.78.134106.
W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, Phys. Rev. B 86, 174307 (2012) PRBMDO 1098-0121 10.1103/PhysRevB.86.174307.
J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G. K. H. Madsen, and N. Mingo, Comput. Phys. Commun. 220, 351 (2017) CPHCBZ 0010-4655 10.1016/j.cpc.2017.06.023.
T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39, 1 (2011) PSSTAW 0079-6786 10.1016/j.progsolidstchem.2011.02.001.
J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Phys. Rev. X 4, 011019 (2014) 10.1103/PhysRevX.4.011019.
X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Adv. Funct. Mater. 22, 1425 (2012) 1616-301X 10.1002/adfm.201102546.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.103.174112 for additional information and data regarding phononic and electronic densities of states, phonon-defect scattering rates, descriptors, and the linear chain model.
F. Aliev, N. Brandt, V. Moshchalkov, V. Kozyrkov, R. Skolozdra, and A. Belogorokhov, Z. Phys. B: Condens. Matter 75, 167 (1989) ZPCMDN 0722-3277 10.1007/BF01307996.
F. G. Aliev, V. V. Kozyrkov, V. V. Moshchalkov, R. V. Scolozdra, and K. Durczewski, Z. Phys. B: Condens. Matter 80, 353 (1990) ZPCMDN 0722-3277 10.1007/BF01323516.
I. Galanakis and P. Mavropoulos, J. Phys.: Condens. Matter 19, 315213 (2007) JCOMEL 0953-8984 10.1088/0953-8984/19/31/315213.
S. Chen and Z. Ren, Mater. Today 16, 387 (2013) 1369-7021 10.1016/j.mattod.2013.09.015.
B. Dongre, J. Carrete, A. Katre, N. Mingo, and G. K. H. Madsen, J. Mater. Chem. C 6, 4691 (2018) 2050-7526 10.1039/C8TC00820E.
P. Klemens, Int. J. Thermophys. 22, 265 (2001) IJTHDY 0195-928X 10.1023/A:1006776107140.
R. He, T. Zhu, Y. Wang, U. Wolff, J.-C. Jaud, A. Sotnikov, P. Potapov, D. Wolf, P. Ying, M. Wood, Energy Environ. Sci. 13, 5165 (2020) 1754-5692 10.1039/D0EE03014G.
B. Dongre, J. Carrete, S. Wen, J. Ma, W. Li, N. Mingo, and G. K. H. Madsen, J. Mater. Chem. A 8, 1273 (2020) 2050-7488 10.1039/C9TA11424F.
J. E. Douglas, C. S. Birkel, N. Verma, V. M. Miller, M.-S. Miao, G. D. Stucky, T. M. Pollock, and R. Seshadri, J. Appl. Phys. 115, 043720 (2014) JAPIAU 0021-8979 10.1063/1.4862955.
M. Wambach, R. Stern, S. Bhattacharya, P. Ziolkowski, E. Müller, G. K. H. Madsen, and A. Ludwig, Adv. Electron. Mater. 2, 1500208 (2016) 2199-160X 10.1002/aelm.201500208.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.