Reactive Oxygen Species; Receptors, GABA-A; Tumor Suppressor Protein p53; Flumazenil; gamma-Aminobutyric Acid; Calcium; Bicuculline; Animals; Bicuculline/pharmacology; Chemoradiotherapy; Flumazenil/pharmacology; Humans; Intestines; Mice; Stem Cells/physiology; United States; gamma-Aminobutyric Acid/pharmacology; Tumor Suppressor Protein p53/genetics; Stem Cells; Immunology and Allergy; Immunology
Abstract :
[en] Lethal intestinal tissue toxicity is a common side effect and a dose-limiting factor in chemoradiotherapy. Chemoradiotherapy can trigger DNA damage and induce P53-dependent apoptosis in LGR5+ intestinal stem cells (ISCs). Gamma-aminobutyric acid (GABA) and its A receptors (GABAAR) are present in the gastrointestinal tract. However, the functioning of the GABAergic system in ISCs is poorly defined. We found that GABAAR α1 (GABRA1) levels increased in the murine intestine after chemoradiotherapy. GABRA1 depletion in LGR5+ ISCs protected the intestine from chemoradiotherapy-induced P53-dependent apoptosis and prolonged animal survival. The administration of bicuculline, a GABAAR antagonist, prevented chemoradiotherapy-induced ISC loss and intestinal damage without reducing the chemoradiosensitivity of tumors. Mechanistically, it was associated with the reduction of reactive oxygen species-induced DNA damage via the L-type voltage-dependent Ca2+ channels. Notably, flumazenil, a GABAAR antagonist approved by the U.S. Food and Drug Administration, rescued human colonic organoids from chemoradiotherapy-induced toxicity. Therefore, flumazenil may be a promising drug for reducing the gastrointestinal side effects of chemoradiotherapy.
Disciplines :
Immunology & infectious disease
Author, co-author :
Zhang, Cuiyu ; Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Zhou, Yuping ; Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Zheng, Junjie ; Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Ning, Nannan ; Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Liu, Haining ; Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
Jiang, Wenyang ; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
Yu, Xin ; Department of Biotherapy, State Key laboratory of Biotherapy and cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Mu, Kun ; Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Li, Yan ; Translational Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
Guo, Wei ; Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Hu, Huili ; Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
Li, Jingxin ; Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Chen, Dawei ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale ; Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Taishan Pandeng Scholar Program of Shandong Province
Funders :
NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by grants from the National Natural Science Foundation of China (31971061, 81903087) and Taishan Pandeng Scholar Program of Shandong Province (tspd20210321).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Accarie, A., B. I’Homme, M.A. Benadjaoud, S.K. Lim, C. Guha, M. Benderitter, R. Tamarat, and A. Semont. 2020. Extracellular vesicles derived from mesenchymal stromal cells mitigate intestinal toxicity in a mouse model of acute radiation syndrome. Stem Cell Res. Ther. 11:371. https://doi.org/10.1186/s13287-020-01887-1
Andang, M., J. Hjerling-Leffler, A. Moliner, T.K. Lundgren, G. Castelo-Branco, E. Nanou, E. Pozas, V. Bryja, S. Halliez, H. Nishimaru, et al. 2008. Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature. 451:460–U464. https://doi.org/10.1038/nature06488
Andreyev, H.J. 2016. GI consequences of cancer treatment: A clinical per-spective. Radiat. Res. 185:341–348. https://doi.org/10.1667/RR14272.1
Auteri, M., M.G. Zizzo, and R. Serio. 2015. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res. 93:11–21. https://doi.org/10.1016/j.phrs.2014.12.001
Bakkenist, C.J., and M.B. Kastan. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 421:499–506. https://doi.org/10.1038/nature01368
Barker, N., A. van Oudenaarden, and H. Clevers. 2012. Identifying the stem cell of the intestinal crypt: Strategies and pitfalls. Cell Stem Cell. 11: 452–460. https://doi.org/10.1016/j.stem.2012.09.009
Berger, M.E., D.M. Christensen, P.C. Lowry, O.W. Jones, and A.L. Wiley. 2006. Medical management of radiation injuries: Current approaches. Occup. Med. 56:162–172. https://doi.org/10.1093/occmed/kql011
Bjurstöm, H., J. Wang, I. Ericsson, M. Bengtsson, Y. Liu, S. Kumar-Mendu, S. Issazadeh-Navikas, and B. Birnir. 2008. GABA, a natural immunomodulator of T lymphocytes. J. Neuroimmunol. 205:44–50. https://doi.org/10.1016/j.jneuroim.2008.08.017
Brogden, R.N., and K.L. Goa. 1991. Flumazenil: A reappraisal of its pharma-cological properties and therapeutic efficacy as a benzodiazepine an-tagonist. Drugs. 42:1061–1089. https://doi.org/10.2165/00003495-199142060-00010
Can, G., B. Akpinar, Y. Baran, B. Zhivotovsky, and M. Olsson. 2013. 5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene. 32:4529–4538. https://doi.org/10.1038/onc.2012.467
Chen, L., F. Liao, Z. Jiang, C. Zhang, Z. Wang, P. Luo, Q. Jiang, J. Wu, Q. Wang, M. Luo, et al. 2020. Metformin mitigates gastrointestinal radiotoxicity and radiosensitises P53 mutation colorectal tumours via optimising autophagy. Br. J. Pharmacol. 177:3991–4006. https://doi.org/10.1111/bph.15149
Clevers, H. 2016. Modeling development and disease with organoids. Cell. 165: 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082
Vila Cuenca, M., A. Cochrane, F.E. van den Hil, A.A.F. de Vries, S.A.J. Ober-stein, C.L. Mummery, and V.V. Orlova. 2021. Engineered 3D vessel-on-chip using hiPSC-derived endothelial-and vascular smooth muscle cells. Stem Cell Rep. 16:2159–2168. https://doi.org/10.1016/j.stemcr.2021.08.003
D’Andrea, G.M. 2005. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J. Clin. 55:319–321. https://doi.org/10.3322/canjclin.55.5.319
Dey, D.K., S.N. Chang, Y. Vadlamudi, J.G. Park, and S.C. Kang. 2020. Syner-gistic therapy with tangeretin and 5-fluorouracil accelerates the ROS/ JNK mediated apoptotic pathway in human colorectal cancer cell. Food Chem. Toxicol. 143:111529. https://doi.org/10.1016/j.fct.2020.111529
Dubois, A., and R.I. Walker. 1988. Prospects for management of gastrointestinal injury associated with the acute radiation syndrome. Gastro-enterology. 95:500–507. https://doi.org/10.1016/0016-5085(88)90512-4
Shao, L., A. Elujoba-Bridenstine, K.E. Zink, L.M. Sanchez, B.J.Cox, K.E.Pollok, A.L. Sinn, B.J. Bailey, E.C. Sims, S.H. Cooper, et al. 2021. The neuro-transmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood. 137:775–787. https://doi.org/10.1182/blood.2019004415
Erlandsson, J., T. Holm, D. Pettersson, A. Berglund, B. Cedermark, C. Radu, H. Johansson, M. Machado, F. Hjern, O. Hallbook, et al. 2017. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (stockholm III): A multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 18:336–346. https://doi.org/10.1016/S1470-2045(17)30086-4
Erlitzki, R., Y. Gong, M. Zhang, and G. Minuk. 2000. Identification of gamma-aminobutyric acid receptor subunit types in human and rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G733–G739. https://doi.org/10.1152/ajpgi.2000.279.4.G733
Fujii, M., M. Matano, K. Nanki, and T. Sato. 2015. Efficient genetic engi-neering of human intestinal organoids using electroporation. Nat. Protoc. 10:1474–1485. https://doi.org/10.1038/nprot.2015.088
Gregorieff, A., Y. Liu, M.R. Inanlou, Y. Khomchuk, and J.L. Wrana. 2015. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal re-generation and cancer. Nature. 526:715–718. https://doi.org/10.1038/nature15382
Gudkov, A.V., and E.A. Komarova. 2010. Radioprotection: Smart games with death. J. Clin. Invest. 120:2270–2273. https://doi.org/10.1172/JCI43794
Guleria, A., and S. Chandna. 2016. ATM kinase: Much more than a DNA damage responsive protein. DNA Repair. 39:1–20. https://doi.org/10.1016/j.dnarep.2015.12.009
Guleria, A., N. Thukral, and S. Chandna. 2018. Intrinsic attenuation of post-irradiation calcium and ER stress imparts significant radioprotection to lepidopteran insect cells. Biochem. Biophys. Res. Commun. 498:905–911. https://doi.org/10.1016/j.bbrc.2018.03.078
Hauer-Jensen, M., J.W. Denham, and H.J.N. Andreyev. 2014. Radiation enteropathy-pathogenesis, treatment and prevention. Nat. Rev. Gas-troenterol. Hepatol. 11:470–479. https://doi.org/10.1038/nrgastro.2014.46
Hendry, J.H., and K. Otsuka. 2016. The role of gene mutations and gene products in intestinal tissue reactions from ionising radiation. Mutat. Res. Rev. Mutat. Res. 770:328–339. https://doi.org/10.1016/j.mrrev.2016.07.006
Jin, Z., S.K. Mendu, and B. Birnir. 2013. GABA is an effective immunomod-ulatory molecule. Amino Acids. 45:87–94. https://doi.org/10.1007/s00726-011-1193-7
Johnstone, V.P., and L.C. Hool. 2014. Glutathionylation of the L-type Ca2+ channel in oxidative stress-induced pathology of the heart. Int. J. Mol. Sci. 15:19203–19225. https://doi.org/10.3390/ijms151019203
Keefe, D.M., J. Brealey, G.J. Goland, and A.G. Cummins. 2000. Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut. 47:632–637. https://doi.org/10.1136/gut.47.5.632
Kim, J.K., Y.S. Kim, H.M. Lee, H.S. Jin, C. Neupane, S. Kim, S.H. Lee, J.J. Min, M. Sasai, J.H. Jeong, et al. 2018. GABAergic signaling linked to au-tophagy enhances host protection against intracellular bacterial in-fections. Nat. Commun. 9:4184. https://doi.org/10.1038/s41467-018-06487-5
Kim, K.A., M. Kakitani, J. Zhao, T. Oshima, T. Tang, M. Binnerts, Y. Liu, B. Boyle, E. Park, P. Emtage, et al. 2005. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science. 309:1256–1259. https://doi.org/10.1126/science.1112521
Lee, S.Y., E.K. Jeong, M.K. Ju, H.M. Jeon, M.Y. Kim, C.H. Kim, H.G. Park, S.I. Han, and H.S. Kang. 2017. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing ra-diation. Mol. Cancer. 16:10. https://doi.org/10.1186/s12943-016-0577-4
Leibowitz, B.J., L. Yang, L. Wei, M.E. Buchanan, M. Rachid, R.A. Parise, J.H. Beumer, J.L. Eiseman, R.E. Schoen, L. Zhang, and J. Yu. 2018. Targeting p53-dependent stem cell loss for intestinal chemoprotection. Sci. Transl. Med. 10:eaam7610. https://doi.org/10.1126/scitranslmed.aam7610
Liu, X., Q. Wang, T.F. Haydar, and A. Bordey. 2005. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8:1179–1187. https://doi.org/10.1038/nn1522
Liu, Z., H. Tian, J. Jiang, Y. Yang, S. Tan, X. Lin, H. Liu, and B. Wu. 2016. β-Arrestin-2 modulates radiation-induced intestinal crypt progenitor/ stem cell injury. Cell Death Differ. 23:1529–1541. https://doi.org/10.1038/cdd.2016.38
Lu, W., Y. Xie, B. Huang, T. Ma, H. Wang, B. Deng, S. Zou, W. Wang, Q. Tang, Z. Yang, et al. 2021. Platelet-derived growth factor C signaling is a potential therapeutic target for radiation proctopathy. Sci. Transl. Med. 13: eabc2344. https://doi.org/10.1126/scitranslmed.abc2344
Ma, X., Q. Sun, X. Sun, D. Chen, C. Wei, X. Yu, C. Liu, Y. Li, and J. Li. 2018. Activation of GABA(A) receptors in colon epithelium exacerbates acute colitis. Front. Immunol. 9:987. https://doi.org/10.3389/fimmu.2018.00987
Mirzayans, R., B. Andrais, A. Scott, and D. Murray. 2012. New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J. Biomed. Biotechnol. 2012:170325. https://doi.org/10.1155/2012/170325
Moss, R.W. 2007. Do antioxidants interfere with radiation therapy for cancer? Integr. Cancer Ther. 6:281–292. https://doi.org/10.1177/1534735407305655
Niu, G., L. Deng, X. Zhang, Z. Hu, S. Han, K. Xu, R. Hong, H. Meng, and C. Ke. 2020. GABRD promotes progression and predicts poor prognosis in colorectal cancer. Open Med. 15:1172–1183. https://doi.org/10.1515/med-2020-0128
Olive, P.L., and J.P. Banath. 2006. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 1:23–29. https://doi.org/10.1038/nprot.2006.5
Olivier, M., M. Hollstein, and P. Hainaut. 2010. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harbor Perspect. Biol. 2:a001008. https://doi.org/10.1101/cshperspect.a001008
Olsen, R.W., and W. Sieghart. 2008. International union of pharmacology. LXX. Subtypes of gamma-aminobutyric Acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60:243–260. https://doi.org/10.1124/pr.108.00505
Qiu, W., B. Leibowitz, L. Zhang, and J. Yu. 2010. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Cancer Res. 70. https://doi.org/10.1158/1538-7445.am10-3198
Roberts, E., and S. Frankel. 1950. Gamma-aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 187:55–63. https://doi.org/10.1016/s0021-9258(19)50929-2
Roth, F.C., and A. Draguhn. 2012. GABA metabolism and transport: Effects on synaptic efficacy. Neural Plast. 2012:805830. https://doi.org/10.1155/2012/805830
Seifi, M., S. Rodaway, U. Rudolph, and J.D. Swinny. 2018. GABA(A) receptor subtypes regulate stress-induced colon inflammation in mice. Gastro-enterology. 155:852–864.e3. https://doi.org/10.1053/j.gastro.2018.05.033
Shu, Q., J. Liu, X. Liu, S. Zhao, H. Li, Y. Tan, and J. Xu. 2016. GABAB R/GSK-3β/NF-κB signaling pathway regulates the proliferation of colorectal cancer cells. Cancer Med. 5:1259–1267. https://doi.org/10.1002/cam4.686
Siddiqui, M.S., M. Francois, M.F. Fenech, and W.R. Leifert. 2015. Persistent gamma H2AX: A promising molecular marker of DNA damage and aging. Mutat. Res. Rev. Mutat. Res. 766:1–19. https://doi.org/10.1016/j.mrrev.2015.07.001
Smith, T.A., D.R. Kirkpatrick, S. Smith, T.K. Smith, T. Pearson, A. Kailasam, K.Z. Herrmann, J. Schubert, and D.K. Agrawal. 2017. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 15:232. https://doi.org/10.1186/s12967-017-1338-x
Valenzuela, C.F., A. Kazlauskas, S.J. Brozowski, J.L. Weiner, K.A. Demali, B.J. McDonald, S.J. Moss, T.V. Dunwiddie, and R.A. Harris. 1995. Platelet-derived growth factor receptor is a novel modulator of type A gamma-aminobutyric acid-gated ion channels. Mol. Pharmacol. 48:1099–1107
Yu, J. 2013. Intestinal stem cell injury and protection during cancer therapy. Transl. Cancer Res. 2:384–396
Zhang, S., Y. Liu, D. Xiang, J. Yang, D. Liu, X. Ren, and C. Zhang. 2018. As-sessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed. Pharmacother. 106:910–916. https://doi.org/10.1016/j.biopha.2018.07.029
Zheng, Z., X. Zhang, J. Liu, P. He, S. Zhang, Y. Zhang, J. Gao, S. Yang, N. Kang, M.I. Afridi, et al. 2021. GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis el-egans. Proc. Natl. Acad. Sci. USA. 118:e2021063118. https://doi.org/10.1073/pnas.2021063118
Zhou, W.J., Z.H. Geng, J.R. Spence, and J.G. Geng. 2013. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature. 501:107–111. https://doi.org/10.1038/nature12416
Zhu, F., M. Feng, R. Sinha, M.P. Murphy, F. Luo, K.S. Kao, K. Szade, J. Seita, and I.L. Weissman. 2019. The GABA receptor GABRR1 is expressed on and functional in hematopoietic stem cells and megakaryocyte pro-genitors. Proc. Natl. Acad. Sci. USA. 116:18416–18422. https://doi.org/10.1073/pnas.1906251116
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.