Protein Isoforms; Receptor, trkC; Srsf1 protein, mouse; Elavl1 protein, mouse; Animals; Alternative Splicing; Mammals/metabolism; Neurons/metabolism; Protein Isoforms/genetics; Protein Isoforms/metabolism; Mice; Cell Line, Tumor; Neocortex/metabolism; Receptor, trkC/chemistry; Receptor, trkC/genetics; Receptor, trkC/metabolism; Mammals; Neocortex; Neurons; Genetics
Abstract :
[en] The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.
Disciplines :
Neurology
Author, co-author :
Weber, A Ioana ; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany ; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
Parthasarathy, Srinivas; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
Borisova, Ekaterina; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany ; Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
Epifanova, Ekaterina ; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
Preußner, Marco; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
Rusanova, Alexandra; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany ; Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
Ambrozkiewicz, Mateusz C; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
Bessa, Paraskevi ; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
Newman, Andrew G ; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
Müller, Lisa; Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
Schaal, Heiner; Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
Heyd, Florian ; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
Tarabykin, Victor; Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany ; Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia
DFG - Deutsche Forschungsgemeinschaft RSF - Russian Science Foundation Boehringer Ingelheim Charité - Universitätsmedizin Berlin
Funding text :
V.T. was supported by the DFG [TA 303/11-1]; In utero electroporation experiments were funded by the 10th Russian Science Foundation (RSF) [22-14-00232]; I.W. was funded by the PhD fellowship of the Boehringer Ingelheim Fonds and a stipend from Charité Universitätsmedizin Berlin. Funding for open access charge: Lab funding.
Florio,M. and Huttner,W.B. (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Dev. Camb. Engl., 141, 2182–2194.
Sun,T. and Hevner,R.F. (2014) Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci., 15, 217–232.
Namba,T. and Huttner,W.B. (2017) Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdiscip. Rev. Dev. Biol., 6, https://doi.org/10.1002/wdev.256.
Kriegstein,A., Noctor,S. and Martínez-Cerdeño,V. (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci., 7, 883–890.
Montiel,J.F., Vasistha,N.A., Garcia-Moreno,F. and Molnár,Z. (2016) From sauropsids to mammals and back: new approaches to comparative cortical development. J. Comp. Neurol., 524, 630–645.
Cárdenas,A. and Borrell,V. (2020) Molecular and cellular evolution of corticogenesis in amniotes. Cell. Mol. Life Sci., 77, 1435–1460.
Fang,W.-Q., Chen,W.-W., Jiang,L., Liu,K., Yung,W.-H., Fu,A.K.Y. and Ip,N.Y. (2014) Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep., 9, 1635–1643.
Falcone,C., Mevises,N.-Y., Hong,T., Dufour,B., Chen,X., Noctor,S.C. and Martínez Cerdeño,V. (2021) Neuronal and glial cell number is altered in a cortical layer-specific manner in autism. Autism Int. J. Res. Pract., 25, 2238–2253.
Zhang,Q., Huang,Y., Zhang,L., Ding,Y.-Q. and Song,N.-N. (2019) Loss of Satb2 in the Cortex and Hippocampus Leads to Abnormal Behaviors in Mice. Front. Mol. Neurosci., 12, 33.
Van Nostrand,E.L., Freese,P., Pratt,G.A., Wang,X., Wei,X., Xiao,R., Blue,S.M., Chen,J.-Y., Cody,N.A.L., Dominguez,D. et al. (2020) A large-scale binding and functional map of human RNA-binding proteins. Nature, 583, 711–719.
Gerstberger,S., Hafner,M. and Tuschl,T. (2014) A census of human RNA-binding proteins. Nat. Rev. Genet., 15, 829–845.
DeBoer,E.M., Kraushar,M.L., Hart,R.P. and Rasin,M.-R. (2013) Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience, 248, 499–528.
McKee,A.E., Minet,E., Stern,C., Riahi,S., Stiles,C.D. and Silver,P.A. (2005) A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev. Biol., 5, 14.
Popovitchenko,T. and Rasin,M.-R. (2017) Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination. Front. Neuroanat., 11, 102.
Matlin,A.J., Clark,F. and Smith,C.W.J. (2005) Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol., 6, 386–398.
Nilsen,T.W. and Graveley,B.R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463.
Kang,H.J., Kawasawa,Y.I., Cheng,F., Zhu,Y., Xu,X., Li,M., Sousa,A.M.M., Pletikos,M., Meyer,K.A., Sedmak,G. et al. (2011) Spatiotemporal transcriptome of the human brain. Nature, 478, 483–489.
Barbosa-Morais,N.L., Irimia,M., Pan,Q., Xiong,H.Y., Gueroussov,S., Lee,L.J., Slobodeniuc,V., Kutter,C., Watt,S., Colak,R. et al. (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science, 338, 1587–1593.
Merkin,J., Russell,C., Chen,P. and Burge,C.B. (2012) Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues. Science, 338, 1593–1599.
Zaghlool,A., Ameur,A., Cavelier,L. and Feuk,L. (2014) Splicing in the human brain. Int. Rev. Neurobiol., 116, 95–125.
Ramsköld,D., Wang,E.T., Burge,C.B. and Sandberg,R. (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol., 5, e1000598.
de la Grange,P., Gratadou,L., Delord,M., Dutertre,M. and Auboeuf,D. (2010) Splicing factor and exon profiling across human tissues. Nucleic Acids Res., 38, 2825–2838.
Xu,Q., Modrek,B. and Lee,C. (2002) Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res., 30, 3754–3766.
Su,C.-H., Dhananjaya,D. and Tarn,W.-Y. (2018) Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci., 5, 12.
Begg,B.E., Jens,M., Wang,P.Y., Minor,C.M. and Burge,C.B. (2020) Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat. Struct. Mol. Biol., 27, 901–912.
Parthasarathy,S., Srivatsa,S., Weber,A.I., Gräber,N., Britanova,O.V., Borisova,E., Bessa,P., Ambrozkiewicz,M.C., Rosário,M. and Tarabykin,V. (2021) TrkC-T1, the non-catalytic isoform of TrkC, governs neocortical progenitor fate specification by inhibition of MAP kinase signaling. Cereb. Cortex, 31, 5470–5486.
Haltenhof,T., Kotte,A., De Bortoli,F., Schiefer,S., Meinke,S., Emmerichs,A.-K., Petermann,K.K., Timmermann,B., Imhof,P., Franz,A. et al. (2020) A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell, 78, 57–69.
Saito,T. (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc., 1, 1552–1558.
Hubbard,K.S., Gut,I.M., Lyman,M.E. and McNutt,P.M. (2013) Longitudinal RNA sequencing of the deep transcriptome during neurogenesis of cortical glutamatergic neurons from murine ESCs. F1000Research, 2, 35.
Greig,L.C., Woodworth,M.B., Galazo,M.J., Padmanabhan,H. and Macklis,J.D. (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci., 14, 755–769.
Rakic,P. (2009) Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci., 10, 724–735.
Friedman,R.C., Farh,K.K.-H., Burge,C.B. and Bartel,D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 19, 92–105.
Agarwal,V., Bell,G.W., Nam,J.-W. and Bartel,D.P. (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4, e05005.
Han,H., Irimia,M., Ross,P.J., Sung,H.-K., Alipanahi,B., David,L., Golipour,A., Gabut,M., Michael,I.P., Nachman,E.N. et al. (2013) MBNL proteins repress embryonic stem cell-specific alternative splicing and reprogramming. Nature, 498, 241–245.
Kim,K.K., Nam,J., Mukouyama,Y. and Kawamoto,S. (2013) Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J. Cell Biol., 200, 443–458.
Zhang,X., Chen,M.H., Wu,X., Kodani,A., Fan,J., Doan,R., Ozawa,M., Ma,J., Yoshida,N., Reiter,J.F. et al. (2016) Cell type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell, 166, 1147–1162.
Ray,D., Kazan,H., Cook,K.B., Weirauch,M.T., Najafabadi,H.S., Li,X., Gueroussov,S., Albu,M., Zheng,H., Yang,A. et al. (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499, 172–177.
Cook,K.B., Kazan,H., Zuberi,K., Morris,Q. and Hughes,T.R. (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res., 39, D301–D308.
Giudice,G., Sánchez-Cabo,F., Torroja,C. and Lara-Pezzi,E. (2016) ATtRACT––a database of RNA-binding proteins and associated motifs. Database, 2016, baw035.
Paz,I., Kosti,I., Ares,M., Cline,M. and Mandel-Gutfreund,Y. (2014) RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res., 42, W361–W367.
Schultz,A.-S., Preussner,M., Bunse,M., Karni,R. and Heyd,F. (2017) Activation-dependent TRAF3 exon 8 alternative splicing is controlled by CELF2 and hnRNP C binding to an upstream intronic element. Mol. Cell. Biol., 37, e00488-16.
Preußner,M., Goldammer,G., Neumann,A., Haltenhof,T., Rautenstrauch,P., Müller-McNicoll,M. and Heyd,F. (2017) Body temperature cycles control rhythmic alternative splicing in mammals. Mol. Cell, 67, 433–446.
Ince-Dunn,G., Okano,H.J., Jensen,K., Park,W.-Y., Ru,Z., Ule,J., Mele,A., Fak,J., Yang,C., Zhang,C. et al. (2012) Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron, 75, 1067–1080.
Freund,M., Asang,C., Kammler,S., Konermann,C., Krummheuer,J., Hipp,M., Meyer,I., Gierling,W., Theiss,S., Preuss,T. et al. (2003) A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res., 31, 6963–6975.
Yeo,G. and Burge,C.B. (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol., 11, 377–394.
Brillen,A.-L., Schöneweis,K., Walotka,L., Hartmann,L., Müller,L., Ptok,J., Kaisers,W., Poschmann,G., Stühler,K., Buratti,E. et al. (2017) Succession of splicing regulatory elements determines cryptic 5ss functionality. Nucleic Acids Res., 45, 4202–4216.
Cartegni,L., Wang,J., Zhu,Z., Zhang,M.Q. and Krainer,A.R. (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res., 31, 3568–3571.
Arlotta,P., Molyneaux,B.J., Chen,J., Inoue,J., Kominami,R. and Macklis,J.D. (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron, 45, 207–221.
Molyneaux,B.J., Arlotta,P., Hirata,T., Hibi,M. and Macklis,J.D. (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron, 47, 817–831.
Britanova,O., de Juan Romero,C., Cheung,A., Kwan,K.Y., Schwark,M., Gyorgy,A., Vogel,T., Akopov,S., Mitkovski,M., Agoston,D. et al. (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron, 57, 378–392.
Alcamo,E.A., Chirivella,L., Dautzenberg,M., Dobreva,G., Fariñas,I., Grosschedl,R. and McConnell,S.K. (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron, 57, 364–377.
Britanova,O., Alifragis,P., Junek,S., Jones,K., Gruss,P. and Tarabykin,V. (2006) A novel mode of tangential migration of cortical projection neurons. Dev. Biol., 298, 299–311.
Molyneaux,B.J., Arlotta,P. and Macklis,J.D. (2007) Molecular development of corticospinal motor neuron circuitry. Novartis Found. Symp., 288, 3–15.
Yuzwa,S.A., Borrett,M.J., Innes,B.T., Voronova,A., Ketela,T., Kaplan,D.R., Bader,G.D. and Miller,F.D. (2017) Developmental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling. Cell Rep., 21, 3970–3986.
Bhaduri,A., Sandoval-Espinosa,C., Otero-Garcia,M., Oh,I., Yin,R., Eze,U.C., Nowakowski,T.J. and Kriegstein,A.R. (2021) An atlas of cortical arealization identifies dynamic molecular signatures. Nature, 598, 200–204.
Di Bella,D.J., Habibi,E., Stickels,R.R., Scalia,G., Brown,J., Yadollahpour,P., Yang,S.M., Abbate,C., Biancalani,T., Macosko,E.Z. et al. (2021) Molecular logic of cellular diversification in the mouse cerebral cortex. Nature, 595, 554–559.
Zhang,Z., Zhou,J., Tan,P., Pang,Y., Rivkin,A.C., Kirchgessner,M.A., Williams,E., Lee,C.-T., Liu,H., Franklin,A.D. et al. (2021) Epigenomic diversity of cortical projection neurons in the mouse brain. Nature, 598, 167–173.
Ichinose,T. and Snider,W.D. (2000) Differential effects of TrkC isoforms on sensory axon outgrowth. J. Neurosci. Res., 59, 365–371.
Valenzuela,D.M., Maisonpierre,P.C., Glass,D.J., Rojas,E., Nuñez,L., Kong,Y., Gies,D.R., Stitt,T.N., Ip,N.Y. and Yancopoulos,G.D. (1993) Alternative forms of rat TrkC with different functional capabilities. Neuron, 10, 963–974.
Bartkowska,K., Paquin,A., Gauthier,A.S., Kaplan,D.R. and Miller,F.D. (2007) Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development, 134, 4369–4380.
Barnabé-Heider,F. and Miller,F.D. (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci., 23, 5149–5160.
Parthasarathy,S., Srivatsa,S., Nityanandam,A. and Tarabykin,V. (2014) Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development, 141, 3324–3330.
Franco,S.J., Gil-Sanz,C., Martinez-Garay,I., Espinosa,A., Harkins-Perry,S.R., Ramos,C. and Müller,U. (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science, 337, 746–749.
Schreiner,D., Simicevic,J., Ahrné,E., Schmidt,A. and Scheiffele,P. (2015) Quantitative isoform-profiling of highly diversified recognition molecules. eLife, 4, e07794.
Brahimi,F., Maira,M., Barcelona,P.F., Galan,A., Aboulkassim,T., Teske,K., Rogers,M.-L., Bertram,L., Wang,J., Yousefi,M. et al. (2016) The paradoxical signals of two TrkC receptor isoforms supports a rationale for novel therapeutic strategies in ALS. PLoS One, 11, e0162307.
Yap,K., Xiao,Y., Friedman,B.A., Je,H.S. and Makeyev,E.V. (2016) Polarizing the neuron through sustained co-expression of alternatively spliced isoforms. Cell Rep., 15, 1316–1328.
Preussner,M., Gao,Q., Morrison,E., Herdt,O., Finkernagel,F., Schumann,M., Krause,E., Freund,C., Chen,W. and Heyd,F. (2020) Splicing-accessible coding 3’UTRs control protein stability and interaction networks. Genome Biol., 21, 186.
Erkelenz,S., Theiss,S., Otte,M., Widera,M., Peter,J.O. and Schaal,H. (2013) HEXploring of the HIV-1 genome allows landscaping of new potential splicing regulatory elements. Retrovirology, 10, P78.
Dreyfuss,G., Matunis,M.J., Pinol-Roma,S. and Burd,C.G. (1993) hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem., 62, 289–321.
Fu,X.-D. and Ares,M. (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689–701.
Fan,X.C., Myer,V.E. and Steitz,J.A. (1997) AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev., 11, 2557–2568.
Fan,X.C. and Steitz,J.A. (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J., 17, 3448–3460.
Meisner,N.-C. and Filipowicz,W. (2011) Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv. Exp. Med. Biol., 700, 106–123.
Lebedeva,S., Jens,M., Theil,K., Schwanhäusser,B., Selbach,M., Landthaler,M. and Rajewsky,N. (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 340–352.
Mukherjee,N., Corcoran,D.L., Nusbaum,J.D., Reid,D.W., Georgiev,S., Hafner,M., Ascano,M., Tuschl,T., Ohler,U. and Keene,J.D. (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell, 43, 327–339.
Quesnel-Vallières,M., Irimia,M., Cordes,S.P. and Blencowe,B.J. (2015) Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev., 29, 746–759.
Weyn-Vanhentenryck,S.M., Feng,H., Ustianenko,D., Duffié,R., Yan,Q., Jacko,M., Martinez,J.C., Goodwin,M., Zhang,X., Hengst,U. et al. (2018) Precise temporal regulation of alternative splicing during neural development. Nat. Commun., 9, 2189.
Harnett,D., Ambrozkiewicz,M.C., Zinnall,U., Rusanova,A., Borisova,E., Drescher,A.N., Couce-Iglesias,M., Villamil,G., Dannenberg,R., Imami,K. et al. (2022) A critical period of translational control during brain development at codon resolution. Nat. Struct. Mol. Biol., 29, 1277–1290.
Xu,X., Yang,D., Ding,J.-H., Wang,W., Chu,P.-H., Dalton,N.D., Wang,H.-Y., Bermingham,J.R., Ye,Z., Liu,F. et al. (2005) ASF/SF2-regulated CaMKII alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell, 120, 59–72.
Lee,S.-H., Lee,H.-K., Kim,C., Kim,Y.-K., Ismail,T., Jeong,Y., Park,K., Park,J.-W., Kwon,O.-S., Kang,B.S. et al. (2016) The splicing factor SRSF1 modulates pattern formation by inhibiting transcription of tissue specific genes during embryogenesis. Biochem. Biophys. Res. Commun., 477, 1011–1016.
Lee,S., Wei,L., Zhang,B., Goering,R., Majumdar,S., Wen,J., Taliaferro,J.M. and Lai,E.C. (2021) ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing. PLoS Genet., 17, e1009439.
Kraushar,M.L., Thompson,K., Wijeratne,H.R.S., Viljetic,B., Sakers,K., Marson,J.W., Kontoyiannis,D.L., Buyske,S., Hart,R.P. and Rasin,M.-R. (2014) Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R. Proc. Natl. Acad. Sci. U.S.A., 111, E3815–E3824.