[en] The challenge to sustain food security while halting the loss of biodiversity and soil quality might be achieved by a transformation in agriculture from high-input management of annual crops to a more nature-based solution introducing perennial cropping systems. This study analysed earthworm communities (numbers, biomass, ecological categories) and diversity over two years, from annual wheat and perennial intermediate wheatgrass (IWG, Thinopyrum intermedium, Kernza®) within the EU-Biodiversa project NAPERDIV from Southern to Northern Europe. Study sites in France, Belgium and Sweden represented diverse soil, climatic and plant growth conditions. In total, 16 species were identified with IWG in France having the highest (13) and annual wheat in Belgium and Sweden the lowest (7) species numbers. Improved biodiversity under perennial wheat was indicated by alpha-diversity indices (Simpson index, Shannon-Weaver index, Evenness). Earthworm abundance and biomass were generally significantly higher in IWG across the three sites (GLMM model). The overall mean earthworm number under IWG was 424.7 No. m−2 compared to 164.7 No. m−2 for annual wheat. Mean earthworm biomass under IWG was 83.7 g m−2 relative to 45.9 g m−2 under annual wheat, respectively. Remarkably, mean number of juvenile earthworms was several times higher on IWG sites relative to the annual comparatives. Moreover, endogeic and epigeic earthworms were supported on the IWG plots. Beta diversity (Sorensen coefficient) emphasised highest similarity between Belgium and Sweden and lowest between France and Sweden, indicating a possible South to North distribution within Western Europe. The Canonical Correspondence Analysis showed discrete clusters for study sites and species distribution (including the subtypes of Allolobophora chlorotica) in relation to soil parameters (pH, soil texture, TOC, TN, WHC, C–N ratio). The CCA additionally discriminated between annual and perennial plots in France. In summary, earthworm communities were more diverse under IWG and seemed to follow a South to North gradient.
Disciplines :
Agriculture & agronomy
Author, co-author :
Förster, Alena ; University of Trier, Faculty of Regional and Environmental Sciences, Department of Soil Science, Trier, Germany ; University of Hohenheim, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Stuttgart, Germany
David, Christophe; ISARA, Agroecology and Environment Unit, Lyon, France
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Dimitrova Mårtensson, Linda-Maria; Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Alnarp, Sweden
Rasche, Frank; University of Hohenheim, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Stuttgart, Germany
Emmerling, Christoph; University of Trier, Faculty of Regional and Environmental Sciences, Department of Soil Science, Trier, Germany
Language :
English
Title :
Earthworm populations and diversity under annual and perennial wheat in a North to South gradient in Western Europe
Sverige Vetenskapsrådet DFG - Deutsche Forschungsgemeinschaft F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This research was performed within the frame of the collaborative project NAPERDIV, which was funded through the 2019–2020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND programme , and with the funding organisations German Research Foundation (grant RA 1717/8-1 ).This field study has been made possible by the Swedish Infrastructure for Ecosystem Science (SITES), in this case, SITES Lönnstorp Research Station at SLU. SITES receives funding through the Swedish Research Council under the grant no 2017-00635 ). We thank the Perennial grain group from AGROPOLE-ISARA LYON (Institut supérieur d'agriculture Rhône-Alpes) and Patrice Barrey for the opportunity to use their fields. Furthermore, this work was partly supported by the Fonds de la Recherche Scientifique - FNRS - under grant n° R.8003.20 .Frank Rasche reports financial support was provided by University of Hohenheim Institute of Agricultural Sciences in the Tropics.This field study has been made possible by the Swedish Infrastructure for Ecosystem Science (SITES), in this case, SITES Lönnstorp Research Station at SLU. SITES receives funding through the Swedish Research Council under the grant no 2017-00635). We thank the Perennial grain group from AGROPOLE-ISARA LYON (Institut supérieur d'agriculture Rhône-Alpes) and Patrice Barrey for the opportunity to use their fields. Furthermore, this work was partly supported by the Fonds de la Recherche Scientifique - FNRS - under grant n°R.8003.20. We would like to thank Pierre Aubry, Camille Bathellier and Thorsten Ruf for their help on the field. Special thanks to Mickaël Hedde for providing an unpublished interactive earthworm key, which helped with identifying selected species. We also wish to thank Elvira Sieberger and Petra Ziegler for their help with soil sample analysis in the laboratory. This research was performed within the frame of the collaborative project NAPERDIV, which was funded through the 2019–2020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND programme, and with the funding organisations German Research Foundation (grant RA 1717/8-1).
Lal, R., Horn, R., Kosaki, T., Soil and Sustainable Development Goals. 2018 https://www.schweizerbart.de/publications/detail/isbn/9783510654253/Soil_and_Sustainable_Development_Goals_. (Accessed 23 May 2023)
Eisenhauer, N., Buscot, F., Heintz‐Buschart, A., Jurburg, S.D., Küsel, K., Sikorski, J., Vogel, H., Guerra, C.A., The multidimensionality of soil macroecology. Global Ecol. Biogeogr. 30 (2021), 4–10, 10.1111/geb.13211.
Turbé, A., Soil Biodiversity: Functions, Threats and Tools for Policy Makers. 2010.
Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W., Dhillion, S., Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33 (1997), 159–193.
Blouin, M., Hodson, M.E., Delgado, E.A., Baker, G., Brussaard, L., Butt, K.R., Dai, J., Dendooven, L., Peres, G., Tondoh, J.E., Cluzeau, D., Brun, J.-J., A review of earthworm impact on soil function and ecosystem services: earthworm impact on ecosystem services. Eur. J. Soil Sci. 64 (2013), 161–182, 10.1111/ejss.12025.
Falco, L., Sandler, R., Momo, F., Di Ciocco, C., Saravia, L., Coviella, C., Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables. PeerJ, 3, 2015, e979, 10.7717/peerj.979.
Pelosi, C., Pey, B., Hedde, M., Caro, G., Capowiez, Y., Guernion, M., Peigné, J., Piron, D., Bertrand, M., Cluzeau, D., Reducing tillage in cultivated fields increases earthworm functional diversity. Appl. Soil Ecol. 83 (2014), 79–87, 10.1016/j.apsoil.2013.10.005.
Bouché, M.B., Strategies Lombriciennes. 25th ed., 1977, Ecol. Bull., Stockholm.
Bottinelli, N., Hedde, M., Jouquet, P., Capowiez, Y., An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma, 372, 2020, 114361, 10.1016/j.geoderma.2020.114361.
Rasche, F., Blagodatskaya, E., Emmerling, C., Belz, R., Musyoki, M.K., Zimmermann, J., Martin, K., A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere, 8, 2017, e02048, 10.1002/ecs2.2048.
Harper, J.L., Population Biology of Plants. 1977, Academic Press, London.
Lokupitiya, E., Paustian, K., Agricultural soil greenhouse gas emissions: a review of national inventory methods. J. Environ. Qual. 35 (2006), 1413–1427, 10.2134/jeq2005.0157.
McIsaac, G., Surface Water Pollution by Nitrogen Fertilizers. 2003, Encyclopedia of Water Science 10.1081/E-EWS120010336.
O'Neal, M.R., Nearing, M.A., Vining, R.C., Southworth, J., Pfeifer, R.A., Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 61 (2005), 165–184, 10.1016/j.catena.2005.03.003.
Vallebona, C., Mantino, A., Bonari, E., Exploring the potential of perennial crops in reducing soil erosion: a GIS-based scenario analysis in southern Tuscany. Italy 66 (2016), 119–131.
A. Ledo, R. Heathcote, A. Hastings, P. Smith, J. Hilier, Perennial-GHG: A New Generic Allometric Model to Estimate Biomass Accumulation and Greenhouse Gas Emissions in Perennial Food and Bioenergy Crops, (n.d.).
Culman, S.W., Snapp, S.S., Ollenburger, M., Basso, B., DeHaan, L.R., Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agron. J. 105 (2013), 735–744, 10.2134/agronj2012.0273.
The Land Institute. What Is Kernza®?. 2023, Kernza® https://kernza.org/what-is-kernza/. (Accessed 25 May 2023)
Duchene, O., Celette, F., Barreiro, A., Dimitrova Mårtensson, L.-M., Freschet, G.T., David, C., Introducing perennial grain in grain crops rotation: the role of rooting pattern in soil quality management. Agronomy, 10, 2020, 1254, 10.3390/agronomy10091254.
Baker, B., Can modern agriculture Be sustainable?. Bioscience 67 (2017), 325–331, 10.1093/biosci/bix018.
Iutzi, F., Crews, T., Perennializing Grain Crop Agriculture: A Pathway for Climate Change Mitigation & Adaption: A White Paper for the Philanthropic Community. 2020.
Audu, V., Ruf, T., Vogt-Kaute, W., Emmerling, C., Changes in microbial biomass and activities supports ecological intensification of marginal soils through organic cultivation of perennial wheat in southern Germany. Biol. Agric. Hortic. 38 (2022), 1–14.
Emmerling, C., Pude, R., Introducing Miscanthus to the greening measures of the EU common agricultural policy. GCB Bioenergy 9 (2017), 274–279, 10.1111/gcbb.12409.
Bourgeois, E., Dequiedt, S., Lelièvre, M., Van Oort, F., Lamy, I., Ranjard, L., Maron, P.A., Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ. Chem. Lett. 13 (2015), 503–511, 10.1007/s10311-015-0532-4.
Ruf, T., Emmerling, C., Soil organic carbon allocation and dynamics under perennial energy crops and their feedbacks with soil microbial biomass and activity. Soil Use Manag. 36 (2020), 646–657, 10.1111/sum.12614.
Audu, V., Rasche, F., Dimitrova Mårtensson, L.-M., Emmerling, C., Perennial cereal grain cultivation: implication on soil organic matter and related soil microbial parameters. Appl. Soil Ecol., 174, 2022, 104414, 10.1016/j.apsoil.2022.104414.
Zahorec, A., Reid, M.L., Tiemann, L.K., Landis, D.A., Perennial grass bioenergy cropping systems: impacts on soil fauna and implications for soil carbon accrual. GCB Bioenergy 14 (2022), 4–23, 10.1111/gcbb.12903.
Crews, T.E., Carton, W., Olsson, L., Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain., 1, 2018, e11, 10.1017/sus.2018.11.
Emmerling, C., Impact of land-use change towards perennial energy crops on earthworm population. Appl. Soil Ecol. 84 (2014), 12–15, 10.1016/j.apsoil.2014.06.006.
McCalmont, J.P., Hastings, A., McNamara, N.P., Richter, G.M., Robson, P., Donnison, I.S., Clifton-Brown, J., Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 9 (2017), 489–507, 10.1111/gcbb.12294.
Emmerling, C., Ruf, T., Audu, V., Werner, W., Udelhoven, T., Earthworm communities are supported by perennial bioenergy cropping systems. Eur. J. Soil Biol., 105, 2021, 103331, 10.1016/j.ejsobi.2021.103331.
Schorpp, Q., Schrader, S., Earthworm functional groups respond to the perennial energy cropping system of the cup plant. Silphium perfoliatum L.), Biomass and Bioenergy 87 (2016), 61–68.
Peni, D., Stolarski, M.J., Bordiean, A., Krzyżaniak, M., Dębowski, M., Silphium perfoliatum—a herbaceous crop with increased interest in recent years for multi-purpose use. Agriculture, 10, 2020, 640, 10.3390/agriculture10120640.
DIN EN ISO 23611-1. Bodenbeschaffenheit - Probennahme von Wirbellosen im Boden - Teil 1: Handauslese und Extraktion von Regenwürmern (ISO 23611-1:2018); Deutsche Fassung EN ISO 23611-1:2018. 2018.
Graff, O., Die Regenwürmer Deutschlands. Ein Bilderatlas für Bauern, Gärtner, Forstwirte und Bodenkundler. 1953, Verlag M. und H. Schaper, Hannover.
Sims, R.W., Gerard, B.M., Earthworms. Keys and Notes for the Identification and Study of the Species. 31st ed., 1985, E. J. Brill Publishing Company, Leiden.
Bouché, M.B., Lombriciens de France: Écologie et Systématique. 1972, Institut National de la Recherche Agronomique.
Blakemore, R., An Updated List of Valid, Invalid and Synonymous Names of Criodriloidea and Lumbricoidea (Annelida: Oligochaeta: Criodrilidae, Sparganophilidae, Ailoscolecidae, Hormogastridae, Lumbricidae, Lutodrilidae). 2008.
Iglesias Briones, M.J., Morán, P., Posada, D., Are the sexual, somatic and genetic characters enough to solve nomenclatural problems in lumbricid taxonomy?. Soil Biol. Biochem. 41 (2009), 2257–2271, 10.1016/j.soilbio.2009.07.008.
Fernández, R., Almodóvar, A., Novo, M., Simancas, B., Díaz Cosín, D.J., Adding complexity to the complex: new insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae). Mol. Phylogenet. Evol. 64 (2012), 368–379, 10.1016/j.ympev.2012.04.011.
Posit team. RStudio. 2023, Integrated Development Environment for R. http://www.posit.co/.
Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4. J. Stat. Software 67 (2015), 1–48, 10.18637/jss.v067.i01.
R Core Team, R., A Language and Environment for Statistical Computing. 2022 https://www.R-project.org/.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016.
Lavelle, P., Earthworm activities and the soil system. Biol. Fertil. Soils, 6, 1988, 10.1007/BF00260820.
Hedde, M., Van Oort, F., Boudon, E., Abonnel, F., Lamy, I., Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass Bioenergy 55 (2013), 122–129, 10.1016/j.biombioe.2013.01.016.
Didden, W.A.M., Earthworm communities in grasslands and horticultural soils. Biol. Fertil. Soils 33 (2001), 111–117, 10.1007/s003740000297.
Kanianska, R., Jaďuďová, J., Makovníková, J., Kizeková, M., Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability, 8, 2016, 906, 10.3390/su8090906.
Boag, B., Palmer, L.F., Neilson, R., Legg, R., Chambers, S.J., Distribution, prevalence and intensity of earthworm populations in arable land and grassland in Scotland. Ann. Appl. Biol. 130 (1997), 153–165, 10.1111/j.1744-7348.1997.tb05791.x.
Schrama, M., Vandecasteele, B., Carvalho, S., Muylle, H., Van Der Putten, W.H., Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8 (2016), 136–147, 10.1111/gcbb.12236.
Vanbeveren, S.P.P., Ceulemans, R., Biodiversity in short-rotation coppice. Renew. Sustain. Energy Rev. 111 (2019), 34–43, 10.1016/j.rser.2019.05.012.
Smith, R., Mcswiney, C., Grandy, A., Suwanwaree, P., Snider, R., Robertson, G., Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Tillage Res. 100 (2008), 83–88, 10.1016/j.still.2008.04.009.
Jill Clapperton, M., Miller, J.J., Larney, F.J., Wayne Lindwall, C., Earthworm populations as affected by long-term tillage practices in southern Alberta, Canada. Soil Biol. Biochem. 29 (1997), 631–633, 10.1016/S0038-0717(96)00189-7.
Schmidt, O., Curry, J.P., Hackett, R.A., Purvis, G., Clements, R.O., Earthworm communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Ann. Appl. Biol. 138 (2001), 377–388, 10.1111/j.1744-7348.2001.tb00123.x.
Briones, M.J.I., Schmidt, O., Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biol. 23 (2017), 4396–4419, 10.1111/gcb.13744.
Kuntz, M., Berner, A., Gattinger, A., Scholberg, J.M., Mäder, P., Pfiffner, L., Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 56 (2013), 251–260, 10.1016/j.pedobi.2013.08.005.
Palm, J., Van Schaik, N.L.M.B., Schröder, B., Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems. Pedobiologia 56 (2013), 23–31, 10.1016/j.pedobi.2012.08.007.
Lapied, E., Nahmani, J., Rousseau, G.X., Influence of texture and amendments on soil properties and earthworm communities. Appl. Soil Ecol. 43 (2009), 241–249, 10.1016/j.apsoil.2009.08.004.
Butt, K.R., Gilbert, J.A., Kostecka, J., Lowe, C.N., Quigg, S.M., Euteneuer, P., Two decades of monitoring earthworms in translocated grasslands at Manchester Airport. Eur. J. Soil Biol., 113, 2022, 103443, 10.1016/j.ejsobi.2022.103443.
Medina-Sauza, R.M., Álvarez-Jiménez, M., Delhal, A., Reverchon, F., Blouin, M., Guerrero-Analco, J.A., Cerdán, C.R., Guevara, R., Villain, L., Barois, I., Earthworms building up soil microbiota, a review. Front. Environ. Sci., 7, 2019, 81, 10.3389/fenvs.2019.00081.
Eisenhauer, N., Schuy, M., Butenschoen, O., Scheu, S., Direct and indirect effects of endogeic earthworms on plant seeds. Pedobiologia 52 (2009), 151–162, 10.1016/j.pedobi.2008.07.002.
Hallam, J., Hodson, M.E., Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biol. Fertil. Soils 56 (2020), 607–617, 10.1007/s00374-020-01432-5.
Don, A., Carbon Dynamics of Young Experimental Afforestations in Thuringia. 2007, Eberhard Karls Universität Tübingen.
Blakemore, R.J., Cosmopolitan Earthworms: an Eco-Taxonomic Guide to the Peregrine Species of the World. 2002.
Lüscher, G., Jeanneret, P., Schneider, M.K., Turnbull, L.A., Arndorfer, M., Balázs, K., Báldi, A., Bailey, D., Bernhardt, K.G., Choisis, J.-P., Elek, Z., Frank, T., Friedel, J.K., Kainz, M., Kovács-Hostyánszki, A., Oschatz, M.-L., Paoletti, M.G., Papaja-Hülsbergen, S., Sarthou, J.-P., Siebrecht, N., Wolfrum, S., Herzog, F., Responses of plants, earthworms, spiders and bees to geographic location, agricultural management and surrounding landscape in European arable fields. Agric. Ecosyst. Environ. 186 (2014), 124–134, 10.1016/j.agee.2014.01.020.
Hodson, M.E., Corstanjeb, R., Jones, D.T., Witton, J., Burton, V.J., Sloan, T., Eggleton, P., Earthworm distributions are not driven by measurable soil properties. Do they really indicate soil quality?. PLoS One, 16, 2021, e0241945, 10.1371/journal.pone.0241945.
Cszudi, C., Szlávecz, K., Lumbricus friendi cognetti, 1904 a new exotic earthworm in North America. Northeast. Nat. 10 (2003), 77–82.
Capowiez, Y., Cadoux, S., Bouchant, P., Ruy, S., Roger-Estrade, J., Richard, G., Boizard, H., The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 105 (2009), 209–216, 10.1016/j.still.2009.09.002.
Butt, K.R., Interactions between selected earthworm species: a preliminary, laboratory-based study. Appl. Soil Ecol. 9 (1998), 75–79, 10.1016/S0929-1393(98)00057-2.
Edwards, C.A., Lofty, J.R., The effect of direct drilling and minimal cultivation on earthworm populations. J. Appl. Ecol., 19, 1982, 723, 10.2307/2403277.
Chauvat, M., Perez, G., Hedde, M., Lamy, I., Establishment of bioenergy crops on metal contaminated soils stimulates belowground fauna. Biomass Bioenergy 62 (2014), 207–211, 10.1016/j.biombioe.2014.01.042.
Burmeister, J., Walter, R., Untersuchungen zur ökologischen Wirkung der Durchwachsenen Silphie aus Bayern. Journal für Kulturpflanzen, 2016, 407–411, 10.5073/JFK.2016.12.11 Seiten.
Wöhl, L., Ruf, T., Emmerling, C., Thiele, J., Schrader, S., Assessment of earthworm services on litter mineralisation and nutrient release in annual and perennial energy crops (Zea mays vs. Silphium perfoliatum). Agriculture, 13, 2023, 494, 10.3390/agriculture13020494.
Singh, S., Singh, J., Vig, A.P., Effect of abiotic factors on the distribution of earthworms in different land use patterns. The Journal of Basic & Applied Zoology 74 (2016), 41–50, 10.1016/j.jobaz.2016.06.001.
Singh, J., Cameron, E., Reitz, T., Schädler, M., Eisenhauer, N., Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 72 (2021), 343–355.