Canada; carbon dioxide; climate change; greenhouse gas removal; nature-based solution; negative emissions technologies; NET; nitrous oxide; RothC; soil model; Emission technology; Gas removal; Greenhouse gas removal; Greenhouses gas; Nature-based solution; Negative emission technology; Nitrous oxide; Rothc; Soil model; Forestry; Renewable Energy, Sustainability and the Environment; Agronomy and Crop Science; Waste Management and Disposal
Abstract :
[en] To combat climate change, carbon dioxide must be prevented from entering the atmosphere or even removed from it. Biochar is one potential practice to sequester carbon, but its climate change mitigation potential depends on a multitude of parameters. Differentiating areas of low and high climate change mitigation through biochar addition is key to maximize its potential and effectively use the available feedstock for its production. This study models the realistic application of 1 metric tonne (t) per hectare (ha) of forest harvest residue derived biochar over the climatically and pedologically diverse agricultural area of British Columbia, Canada, and provides a framework and assumptions for reproducibility in other parts of the world. The model accounts for the direct (input of organic carbon) and indirect (enhanced plant biomass) effects of biochar on soil organic carbon stock, its impact on nitrous oxide emissions from soils, and the avoided emissions from the reduced lime requirement due to biochar's alkalinization potential. Impacts are modelled over 20-year time horizon to account for the duration and magnitude variation over time of biochar effect on plant biomass and nitrous oxide emissions from soil and conform to the IPCC GWP 20-year time horizon reporting. The results show that a single application of 1 t of biochar per ha−1 can mitigate between 3 and 5 t CO2e ha−1 over a 20-year time frame. Applied to the 746,000 ha of agricultural land of British Columbia this translate to the mitigation of a total of 2.5 million metric tonnes (Mt) CO2e over a 20-year time frame. Further, the results identify agricultural areas in the Lower Mainland region (the southwestern corner of British Columbia) as the area maximizing climate change mitigation potential through biochar addition due to a combination of relative high temperature, high precipitation, and crops with high nitrogen requirement.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Lefebvre, David ; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Meersmans, Jeroen ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Edgar, Jack; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Hamilton, Morgan; Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
Bi, Xiaotao; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
Language :
English
Title :
Environmental factors controlling biochar climate change mitigation potential in British Columbia's agricultural soils
Agriculture and Agri-Food Canada. (2016). Tool to Determine Areas of Potential Opportunity for Carbon Sequestration on Agricultural Lands in Canada. https://cartes.canada.ca/journal/content-fr.html?lang=fr&;appid=06726c030bc64193881f08c75e75b766&appidalt=06726c030bc64193881f08c75e75b766
Bai, S. H., Omidvar, N., Gallart, M., Kämper, W., Tahmasbian, I., Farrar, M. B., Singh, K., Zhou, G., Muqadass, B., Xu, C. Y., Koech, R., Li, Y., Nguyen, T. T. N., & van Zwieten, L. (2022). Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Science of the Total Environment, 808, 152073. https://doi.org/10.1016/j.scitotenv.2021.152073
BC Hydro and Industrial Forestry Service Ltd. (2018). Wood Based Biomass in British Columbia and its Potential for New Electricity Generation Prepared for BC Hydro's Long Term Planning Process (March), pp. 1–56. https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/corporate/regulatory-planning-documents/integrated-resource-plans/current-plan/rou-characterization-wood-based-biomass-report-201507-industrial-forestry-service.pdf
Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. https://cran.r-project.org/package=SPEI
Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as a soil potassium management strategy: A review. Science of the Total Environment, 858, 159782. https://doi.org/10.1016/j.scitotenv.2022.159782
Blackburn, K. (2017). Bulkley Timber Supply Area Biomass Availability Estimation. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/timber-tenures/fibre-recovery/tr2017n52.pdf
Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017
Blanco-Canqui, H., Laird, D. A., Heaton, E. A., Rathke, S., & Acharya, B. S. (2020). Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy, 12(4), 240–251. https://doi.org/10.1111/gcbb.12665
Borchard, N., Schirrmann, M., Cayuela, M. L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J. A., & Novak, J. (2019). Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 651, 2354–2364. https://doi.org/10.1016/j.scitotenv.2018.10.060
Canadian Council of Forest Ministers. (2020). National Forestry Database – Base de données nationales des forêts – Canada (Version 2.0.0) [Data set]. https://doi.org/10.5281/zenodo.3690046
Chagas, J. K. M., de Figueiredo, C. C., & Ramos, M. L. G. (2022). Biochar increases soil carbon pools: Evidence from a global meta-analysis. Journal of Environmental Management, 305, 114403. https://doi.org/10.1016/j.jenvman.2021.114403
Chen, G., Fang, Y., van Zwieten, L., Xuan, Y., Tavakkoli, E., Wang, X., & Zhang, R. (2021). Priming, stabilization and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar. Soil Biology and Biochemistry, 154, 108139. https://doi.org/10.1016/j.soilbio.2021.108139
Chiquier, S., Patrizio, P., Bui, M., Sunny, N., & Mac Dowell, N. (2022). A comparative analysis of the efficiency, timing, and permanence of CO2 removal pathways. Energy & Environmental Science, 15, 4389–4403. https://doi.org/10.1039/d2ee01021f
Climate Analytics and New Climate Institute. (2023). Countries, Climate Action Tracker. https://climateactiontracker.org/countries/
Coleman, K., & Jenkinson, D. S. (2014). RothC – A model for the turnover of carbon in soil model – Model description and users guide. Routledge. https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_WIN.pdf
Cornelis, J.-T., Bittman, S., Black, A., Chanway, C., Grayston, S., Hannam, K., Kabzems, R., Kranabetter, M., Krzic, M., Lavkulich, L., Prescott, C., Preston, M. D., Sanborn, P., Simard, S., & Smukler, S. (2022). Soil priorities in British Columbia, Canada. Geoderma Regional, 29(April), e00511. https://doi.org/10.1016/j.geodrs.2022.e00511
Das, S. K., Ghosh, G. K., & Avasthe, R. (2023). Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery, 13(2), 1359–1369. https://doi.org/10.1007/s13399-020-01013-4
de Ruiter, G. (2018). Greenhouse gas lifecycle assessment of biochar and biocoal application in British Columbia. University of Norther British Columbia. https://doi.org/10.13140/RG.2.2.21891.58408
Ding, F., van Zwieten, L., Zhang, W., Weng, Z., Shi, S., Wang, J., & Meng, J. (2018). A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 18(4), 1507–1517. https://doi.org/10.1007/s11368-017-1899-6
ECCC. (2022b). Part 2 – National Inventory Report 1990–2020: Greenhouse Gas Sources and Sinks in Canada. https://unfccc.int/documents/461919
ECCC. (2022c). Part 3 – National Inventory Report 1990–2020: Greenhouse Gas Sources and Sinks in Canada. https://unfccc.int/documents/461919
Fridahl, M., Haikola, S., Rogers, P. M., & Hansson, A. (2021). Biochar deployment drivers and barriers in least developed countries. In W. Leal Filho, J. Luetz, & D. Ayal (Eds.), Handbook of climate change management (pp. 119–148). Springer International Publishing. https://doi.org/10.1007/978-3-030-57281-5_324
Government of British Columbia. (2022). FAST STATS 2019 – British Columbia's Agriculture, Food and Seafood Sector. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/statistics/industry-and-sector-profiles/fast-stats/fast_stats_2019.pdf
Government of Canada. (2021). Crop production: Visualization tool, The Agriculture Stats Hub. https://www150.statcan.gc.ca/n1/pub/71-607-x/agri-eng.htm
Government of Canada. (2022). Soil Organic Matter Indicator. https://agriculture.canada.ca/en/agricultural-production/soil-and-land/soil-organic-matter-indicator
Hardy, B., Cornelis, J. T., Houben, D., Leifeld, J., Lambert, R., & Dufey, J. E. (2016). Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. European Journal of Soil Science, 68(January), 1–10. https://doi.org/10.1111/ejss.12395
He, Y., Zhou, X., Jiang, L., Li, M., du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H., & Xu, C. (2017). Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy, 9(4), 743–755. https://doi.org/10.1111/gcbb.12376
Hergoualc'h, K., Akiyama, H., Bernoux, M., Chirinda, N., Prado, A. del, Kasimir, Å., MacDonald, J. D., Ogle, S. M., Regina, K., & Weerden, T. J. van der. (2019). N2O Emissions From Managed Soils, and CO2 Emissions From lime and urea application, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf
Huffman, T., Yang, J. Y., Drury, C. F., de Jong, R., Yang, X. M., & Liu, Y. C. (2008). Estimation of Canadian manure and fertilizer nitrogen application rates at the crop and soil-landscape polygon level. Canadian Journal of Soil Science, 88(5), 619–627. https://doi.org/10.4141/CJSS07020
Illert, A., & Afflerbach, S. (2022). ISO 19131 AAFC Annual Crop Inventory – Data Product Specifications, Distribution. http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcCropTypeMapping/en/ISO19131_AAFC_Annual_Crop_Inventory_Data_Product_Specifications.pdf
IPCC. (2020). Climate Change and Land – Summary for policy makers, Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf
Jian, J., Steele, M. K., Zhang, L., Bailey, V. L., Zheng, J., Patel, K. F., & Bond-Lamberty, B. P. (2022). On the use of air temperature and precipitation as surrogate predictors in soil respiration modelling. European Journal of Soil Science, 73(1), 1–14. https://doi.org/10.1111/ejss.13149
Jing, Q., Shang, J., Huffman, T., Qian, B., Pattey, E., Liu, J., Dong, T., Drury, C. F., & Tremblay, N. (2017). Using the CSM-CERES-Maize model to assess the gap between actual and potential yields of grain maize. Journal of Agricultural Science, 155(2), 239–260. https://doi.org/10.1017/S0021859616000290
Jing, Q., Qian, B., Shang, J., Huffman, T., Liu, J., Pattey, E., Dong, T., Tremblay, N., Drury, C. F., Ma, B. L., Jégo, G., Jiao, X., Kovacs, J., Walters, D., & Wang, J. (2017). Assessing the options to improve regional wheat yield in eastern Canada using the csm–ceres–wheat model. Agronomy Journal, 109(2), 510–523. https://doi.org/10.2134/agronj2016.06.0364
Joseph, S., Cowie, A. L., van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z. (. H.)., & Lehmann, J. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731–1764. https://doi.org/10.1111/gcbb.12885
Kaur, N., Kieffer, C., Ren, W., & Hui, D. (2022). How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta-analyses. GCB Bioenergy, 15(1), 1–14. https://doi.org/10.1111/gcbb.13003
Kissel, D. E., & Harris, G. (2015). Fertilizer recommendations by crops. UGA Publication. http://aesl.ces.uga.edu/publications/soil/cropsheets.pdf
Kumar, A., Bhattacharya, T., Mukherjee, S., & Sarkar, B. (2022). A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar, 4(1), 1–23. https://doi.org/10.1007/s42773-022-00148-z
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396
Lévesque, V., Oelbermann, M., & Ziadi, N. (2022). Biochar in temperate soils: Opportunities and challenges. Canadian Journal of Soil Science, 102(1), 1–26. https://doi.org/10.1139/cjss-2021-0047
Li, Y., Jiang, S., Wang, T., Lin, Y., & Mao, H. (2018). Research on biochar via a comprehensive scientometric approach. RSC Advances, 8(50), 28700–28709. https://doi.org/10.1039/c8ra05689g
Liu, Q., Liu, B., Zhang, Y., Hu, T., Lin, Z., Liu, G., Wang, X., Ma, J., Wang, H., Jin, H., Ambus, P., Amonette, J. E., & Xie, Z. (2019). Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Global Change Biology, 25, 2077–2093. https://doi.org/10.1111/gcb.14613
Ludemann, C. I., Gruere, A., Heffer, P., & Dobermann, A. (2022). Global data on fertilizer use by crop and by country. Scientific Data, 9(1), 501. https://doi.org/10.1038/s41597-022-01592-z
MacDonald, A. J., Bernardo, J., & Spencer, S. (2012). Assessment of Forest Feedstock (Biomass) for Campbell River. http://www.llbc.leg.bc.ca/public/pubdocs/bcdocs2013/529447/campbellriverbiomassassessment.pdf
Maestrini, B., Nannipieri, P., & Abiven, S. (2015). A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy, 7(4), 577–590. https://doi.org/10.1111/gcbb.12194
Meersmans, J., Martin, M. P., Lacarce, E., Orton, T. G., De Baets, S., Gourrat, M., Saby, N. P. A., Wetterlind, J., Bispo, A., Quine, T. A., & Arrouays, D. (2013). Estimation of soil carbon input in France: An inverse modelling approach. Pedosphere, 23(4), 422–436. https://doi.org/10.1016/S1002-0160(13)60035-1
Ministry of Forests Lands and Natural Resource Operations. (2019). Major Timber Processing Facilities In British Columbia 2019. Victoria. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/fibre-mills/2019_mill_list_report_final.pdf
Moeys, J. (2018). The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data. R package version 1.2.13. R vignette, p. 104. http://cran.r-project.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf
Paul, S. S., Dowell, L., Coops, N. C., Johnson, M. S., Krzic, M., Geesing, D., & Smukler, S. M. (2020). Tracking changes in soil organic carbon across the heterogeneous agricultural landscape of the Lower Fraser Valley of British Columbia. Science of the Total Environment, 732, 138994. https://doi.org/10.1016/j.scitotenv.2020.138994
Petersen, H. I., Lassen, L., Rudra, A., Nguyen, L. X., do, P. T. M., & Sanei, H. (2023). Carbon stability and morphotype composition of biochars from feedstocks in the Mekong Delta, Vietnam. International Journal of Coal Geology, 271, 104233. https://doi.org/10.1016/j.coal.2023.104233
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. The Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021
Poore, J., & Nemecek, T. (2018). Supp_Mat_Reducing food's environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216
Pourhashem, G., Hung, S. Y., Medlock, K. B., & Masiello, C. A. (2018). Policy support for biochar: Review and recommendations. GCB Bioenergy, 11(2), 1–17. https://doi.org/10.1111/gcbb.12582
Province of British Columbia. (2018). British Columbia Soil Information Finder Tool. https://governmentofbc.maps.arcgis.com/apps/MapSeries/index.html?appid=cc25e43525c5471ca7b13d639bbcd7aa
Pulcher, R., Balugani, E., Ventura, M., Greggio, N., & Marazza, D. (2022). Inclusion of biochar in a C-dynamics model based on observations from a 8 years field experiment, Soil.Copernicus.Org, pp. 199–211. https://soil.copernicus.org/preprints/soil-2021-131/
QGIS Association. (2023). QGIS Geographic Information System. http://www.qgis.org
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Schmidt, H., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Monedero, M. A. S., & Cayuela, M. L. (2021). Biochar in agriculture – A systematic review of 26 global meta-analyses. GCB Bioenergy, 13(11), 1708–1730. https://doi.org/10.1111/gcbb.12889
Schmidt, H., Pandit, B. H., Cornelissen, G., & Kammann, C. I. (2017). Biochar-based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land Degradation & Development, 28(8), 2324–2342. https://doi.org/10.1002/ldr.2761
Schmidt, H. -P., Abiven, S., Hagemann, N., & Drewer Meyer zu, J. (2022). Permanence of soil applied biochar. An executive summary for Global Biochar Carbon Sink certification. In the Biochar Journal (Issue November). https://www.biochar-journal.org/en/ct/109
Sierra, C. A., Müller, M., & Trumbore, S. E. (2012). Models of soil organic matter decomposition: The SoilR package, version 1.0. Geoscientific Model Development, 5(4), 1045–1060. https://doi.org/10.5194/gmd-5-1045-2012
Singh, B., Dolk, M. M., Shen, Q., & Camps-Arbestain, M. (2017). Biochar pH, electrical conductivity and liming potential. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A guide to analytical methods (pp. 23–38). CSIRO Publishing. https://doi.org/10.1071/9781486305100
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturatin of soils. Plant and Soil, 241, 155–176. https://doi.org/10.1023/A:1016125726789
Smeets, E. M. W., Bouwman, L. F., Stehfest, E., Van Vuuren, D. P., & Posthuma, A. (2009). Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global Change Biology, 15(1), 1–23. https://doi.org/10.1111/j.1365-2486.2008.01704.x
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., … Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42–50. https://doi.org/10.1038/nclimate2870
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., … Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition, The State of Carbon Dioxide Removal. https://www.stateofcdr.org/resources
Statistics Canada. (2022). Land inputs, manure and irrigation, Census of Agriculture – 2021. https://doi.org/10.25318/3210036801-eng
Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228. https://doi.org/10.1007/s10705-006-9000-7
Subedi, K. D., & Ma, B. L. (2009). Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Research, 110(1), 21–26. https://doi.org/10.1016/j.fcr.2008.06.013
Tisserant, A., Morales, M., Cavalett, O., O'Toole, A., Weldon, S., Rasse, D. P., & Cherubini, F. (2022). Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resources, Conservation and Recycling, 179(November 2021), 106030. https://doi.org/10.1016/j.resconrec.2021.106030
Veksha, A., McLaughlin, H., Layzell, D. B., & Hill, J. M. (2014). Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity. Bioresource Technology, 153, 173–179. https://doi.org/10.1016/j.biortech.2013.11.082
Vossen, P. (2006). Changing pH in Soil. University of California Cooperative Extension, 11, 1–2. http://vric.ucdavis.edu/pdf/Soil/ChangingpHinSoil.pdf
Wang, H., Clift, R., & Bi, X. (2022). Part II Clean Energy Strategies for Mitigating Greenhouse Gas Emissions in British Columbia. https://cerc.sites.olt.ubc.ca/files/2022/01/22-01-30-White-paper-Part-II.pdf
Wang, H., Zhang, S., Bi, X., & Clift, R. (2020). Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia, Canada. Energy Policy, 138, 111285. https://doi.org/10.1016/j.enpol.2020.111285
Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy, 8(3), 512–523. https://doi.org/10.1111/gcbb.12266
Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 11(6), e0156720. https://doi.org/10.1371/journal.pone.0156720
Weng, Z. (Han), van Zwieten, L., Tavakkoli, E., Rose, M. T., Singh, B. P., Joseph, S., Macdonald, L. M., Kimber, S., Morris, S., Rose, T. J., Archanjo, B. S., Tang, C., Franks, A. E., Diao, H., Schweizer, S., Tobin, M. J., Klein, A. R., Vongsvivut, J., Chang, S. L. Y., … Cowie, A. (2022). Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-32819-7
Woolf, D., Lehmann, J., Ogle, S., Kishimoto-Mo, A. W., McConkey, B., & Baldock, J. (2021). Greenhouse gas inventory model for biochar additions to soil. Environmental Science & Technology, 55(21), 14795–14805. https://doi.org/10.1021/acs.est.1c02425
Wu, P., Singh, B. P., Wang, H., Jia, Z., Wang, Y., & Chen, W. (2023). Bibliometric analysis of biochar research in 2021: A critical review for development, hotspots and trend directions. Biochar, 5(1), 6. https://doi.org/10.1007/s42773-023-00204-2
Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 169(March), 108657. https://doi.org/10.1016/j.soilbio.2022.108657
Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use and Management, 36(1), 2–18. https://doi.org/10.1111/sum.12546