[en] Soil organic carbon (C) is a key component of the global C budget. As soil organic C turnover rates decrease with depth, agricultural practices favoring deep organic C storage will gain importance as long-term climate change mitigation strategies. In addition, amendment of pyrogenic organic matter (biochar) is considered a promising practice for sequestering C in croplands. However, so far the >30 cm depth soil organic C pool, and subsoil biochar dynamics in particular, has been understudied. To address this, we focused on leftovers from pre-industrial charcoal kilns as a proxy to study the accrual of century-old biochar in the subsoil (30–100 cm) in comparison to adjacent control soil. Using thermal and elemental analyses as well as size and density fractionations (i.e., separating particulate and mineral-associated organic matter), we determined the distribution of pyrogenic organic C within the soil profile and investigated its stabilization in depth. We measured the dissolved organic carbon (DOC) concentrations as well as absorbance and fluorescence properties of dissolved organic matter (DOM) at different depths to characterize the effects of century-old biochar accumulation on the current leaching of DOM. Our results showed that the presence of century-old biochar resulted in an increase of 53.8 ± 25.1 t C ha−1 in 0–100 cm, and 12 % of the pyrogenic organic C was stored in 30–60 cm. No difference in C stocks was observed in 60–100 cm between kiln sites and reference soils. Most of the pyrogenic organic C has been translocated as particulate organic matter, either free or occluded, to subsoils. This led to a change in the dominant fraction of organic matter in the E horizon; in reference soils 64.7 % of the total C was associated with mineral phases as opposed to only 42.3 % in soils enriched with biochar. The thermal analysis of the mineral-associated organic matter revealed that pyrogenic organic C was associated with mineral phases. With depth, DOC concentrations decreased and the relative contribution of microbial byproducts to fluorescent DOM increased. The soils enriched with century-old biochar displayed lower DOC concentrations and more aromatic DOM in the Ap horizon, which suggests biochar dissolution is still an on-going process. Our results suggest that the vertical transfers of century-old biochar mainly occurred as particle leaching in macroporosity and bioturbation but continuous dissolution has also contributed in these fine-textured cropland soils. In conclusion, the association of pyrogenic organic C with mineral phases as well as its migration in subsoil horizons promoted its physical disconnection from abiotic and biotic degrading agents, which likely contribute to the long-term stability of biochar.
Burgeon, Victor ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Meersmans, Jeroen ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Leifeld, Jens ; Climate and Agriculture Group, Agroscope, Zurich, Switzerland
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
Language :
English
Title :
Accumulation of century-old biochar contributes to carbon storage and stabilization in the subsoil
We would like to thank colleagues from the water-soil-plant exchange lab for their advice during the set-up of the field work and in particular Thomas Rochereau for his precious work in the lab. A special thanks goes to Alexandre Godfrind owner and farmer of the experimental site for his help in the field. We warmly thank the two anonymous reviewers for their supportive contributions and constructive comments which improved the quality of the manuscript. This research was funded through the Concerted Research Action grant 17/21-03 within the CHAR project framework by the French Community of Belgium .
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abiven, S., Hengartner, P., Schneider, M.P.W., Singh, N., Schmidt, M.W.I., Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 43 (2011), 1615–1617, 10.1016/j.soilbio.2011.03.027.
Aller, D., Rathke, S., Laird, D., Cruse, R., Hatfield, J., Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 307 (2017), 114–121, 10.1016/j.geoderma.2017.08.007.
Angst, G., Mueller, K.E., Nierop, K.G.J., Simpson, M.J., Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem., 156, 2021, 108189, 10.1016/j.soilbio.2021.108189.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., Hatté, C., Atmosphere–soil carbon transfer as a function of soil depth. Nature, 1, 2018, 10.1038/s41586-018-0328-3.
Batjes, N.h., Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47 (1996), 151–163, 10.1111/j.1365-2389.1996.tb01386.x.
Begill, N., Don, A., Poeplau, C., No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils. Glob. Chang. Biol. 29 (2023), 4662–4669, 10.1111/gcb.16804.
Biederman, L.A., Harpole, W.S., Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5 (2013), 202–214, 10.1111/gcbb.12037.
Birdwell, J.E., Engel, A.S., Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem. 41 (2010), 270–280, 10.1016/j.orggeochem.2009.11.002.
Bonhage, A., Raab, T., Schneider, A., Fischer, T., Ramezany, S., Ouimet, W., Raab, A., Hirsch, F., Vertical SOC distribution and aromatic carbon in centuries old charcoal-rich Technosols. Eur. J. Soil Sci., 73, 2022, e13293.
Borchard, N., Ladd, B., Eschemann, S., Hegenberg, D., Möseler, B.M., Amelung, W., Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232–234 (2014), 236–242, 10.1016/j.geoderma.2014.05.007.
Bowring, S.P.K., Jones, M.W., Ciais, P., Guenet, B., Abiven, S., Pyrogenic carbon decomposition critical to resolving fire's role in the Earth system. Nat. Geosci. 15 (2022), 135–142, 10.1038/s41561-021-00892-0.
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., Zech, W., Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128 (2005), 116–129, 10.1016/j.geoderma.2004.12.019.
Burgeon, V., Fouché, J., Leifeld, J., Chenu, C., Cornélis, J.-T., Organo-mineral associations largely contribute to the stabilization of century-old pyrogenic organic matter in cropland soils. Geoderma, 388, 2021, 114841, 10.1016/j.geoderma.2020.114841.
Burgeon, V., Fouché, J., Garré, S., Dehkordi, R.H., Colinet, G., Cornelis, J.-T., Young and century-old biochars strongly affect nutrient cycling in a temperate agroecosystem. Agr. Ecosyst. Environ., 328, 2022, 107847, 10.1016/j.agee.2021.107847.
Button, E.S., Pett-Ridge, J., Murphy, D.V., Kuzyakov, Y., Chadwick, D.R., Jones, D.L., Deep-C storage: biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem., 170, 2022, 108697, 10.1016/j.soilbio.2022.108697.
Carcaillet, C., Soil particles reworking evidences by AMS 14C dating of charcoal. C.R. Acad. Sci., Ser. IIA: Sci. - Earth Planet. Sci. 332 (2001), 21–28, 10.1016/S1251-8050(00)01485-3.
Cheng, C.-H., Lehmann, J., Ageing of black carbon along a temperature gradient. Chemosphere 75 (2009), 1021–1027, 10.1016/j.chemosphere.2009.01.045.
Cheng, C.-H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H., Oxidation of black carbon by biotic and abiotic processes. Org Geochem. 37 (2006), 1477–1488, 10.1016/j.orggeochem.2006.06.022.
Cheng, C.-H., Lehmann, J., Engelhard, M.H., Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 72 (2008), 1598–1610, 10.1016/j.gca.2008.01.010.
Chenu, C., Angers, D.A., Barré, P., Derrien, D., Arrouays, D., Balesdent, J., Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 188 (2019), 41–52, 10.1016/j.still.2018.04.011.
Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agr. Ecosyst. Environ., 295, 2020, 106882, 10.1016/j.agee.2020.106882.
Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12 (2019), 989–994, 10.1038/s41561-019-0484-6.
Crane-Droesch, A., Abiven, S., Jeffery, S., Torn, M.S., Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ. Res. Lett., 8, 2013, 044049, 10.1088/1748-9326/8/4/044049.
Czimczik, C.I., Masiello, C.A., Controls on black carbon storage in soils. Global Biogeochem. Cycles, 21, 2007, 10.1029/2006GB002798.
Dell'Abate, M.T., Benedetti, A., Sequi, P., Thermal methods of organic matter maturation monitoring during a composting process. J. Therm. Anal. Calorim. 61 (2000), 389–396, 10.1023/A:1010157115211.
Derrien, D., Barré, P., Basile-Doelsch, I., Cécillon, L., Chabbi, A., Crème, A., Fontaine, S., Henneron, L., Janot, N., Lashermes, G., Quénéa, K., Rees, F., Dignac, M.-F., Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review. Agron. Sustain. Dev., 43, 2023, 21, 10.1007/s13593-023-00876-x.
Dittmar, T., de Rezende, C.E., Manecki, M., Niggemann, J., Coelho Ovalle, A.R., Stubbins, A., Bernardes, M.C., Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat. Geosci. 5 (2012), 618–622, 10.1038/ngeo1541.
Dove, N.C., Arogyaswamy, K., Billings, S.A., Botthoff, J.K., Carey, C.J., Cisco, C., DeForest, J.L., Fairbanks, D., Fierer, N., Gallery, R.E., Kaye, J.P., Lohse, K.A., Maltz, M.R., Mayorga, E., Pett-Ridge, J., Yang, W.H., Hart, S.C., Aronson, E.L., Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ. Res. Lett., 15, 2020, 1040a1, 10.1088/1748-9326/abb0b3.
Eckmeier, E., Gerlach, R., Skjemstad, J.O., Ehrmann, O., Schmidt, M.W.I., Minor changes in soil organic carbon and charcoal concentrations detected in a temperate deciduous forest a year after an experimental slash-and-burn. Biogeosciences 4 (2007), 377–383, 10.5194/bg-4-377-2007.
Eusterhues, K., Rumpel, C., Kögel-Knabner, I., Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org. Geochem. 38 (2007), 1356–1372, 10.1016/j.orggeochem.2007.04.001.
Eykelbosh, A.J., Johnson, M.S., Couto, E.G., Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. J. Environ. Manage. 149 (2015), 9–16, 10.1016/j.jenvman.2014.09.033.
Fellman, J.B., Hood, E., Spencer, R.G., Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55 (2010), 2452–2462.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., Rumpel, C., Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450 (2007), 277–280, 10.1038/nature06275.
Forbes, M.S., Raison, R.J., Skjemstad, J.O., Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 370 (2006), 190–206, 10.1016/j.scitotenv.2006.06.007.
Fouché, J., Christiansen, C.T., Lafrenière, M.J., Grogan, P., Lamoureux, S.F., Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11 (2020), 1–11, 10.1038/s41467-020-18331-w.
Georgiou, K., Jackson, R.B., Vindušková, O., Abramoff, R.Z., Ahlström, A., Feng, W., Harden, J.W., Pellegrini, A.F.A., Polley, H.W., Soong, J.L., Riley, W.J., Torn, M.S., Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun., 13, 2022, 3797, 10.1038/s41467-022-31540-9.
Goidts, E., van Wesemael, B., Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005). Geoderma 141 (2007), 341–354, 10.1016/j.geoderma.2007.06.013.
Hardy, B., Cornelis, J.-T., Houben, D., Leifeld, J., Lambert, R., Dufey, J.E., Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. Eur. J. Soil Sci. 68 (2017), 80–89, 10.1111/ejss.12395.
Hardy, B., Borchard, N., Leifeld, J., Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers. Soil 8 (2022), 451–466, 10.5194/soil-8-451-2022.
Hardy, B., Dufey, J.E., The resistance of centennial soil charcoal to the “Walkley-Black” oxidation. Geoderma 303 (2017), 37–43, 10.1016/j.geoderma.2017.05.001.
Hardy, B., Leifeld, J., Knicker, H., Dufey, J.E., Deforce, K., Cornélis, J.-T., Long term change in chemical properties of preindustrial charcoal particles aged in forest and agricultural temperate soil. Org. Geochem. 107 (2017), 33–45, 10.1016/j.orggeochem.2017.02.008.
Heidarian Dehkordi, R., Burgeon, V., Fouché, J., Placencia Gomez, E., Cornelis, J.-T., Nguyen, F., Denis, A., Meersmans, J., Using UAV collected RGB and multispectral images to evaluate winter wheat performance across a site characterized by century-old biochar patches in Belgium. Remote Sens., 12, 2020, 2504, 10.3390/rs12152504.
Heidarian Dehkordi, R., Denis, A., Fouché, J., Burgeon, V., Cornelis, J.T., Tychon, B., Placencia Gomez, E., Meersmans, J., Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery. Int. J. Appl. Earth Obs. Geoinf., 91, 2020, 102147, 10.1016/j.jag.2020.102147.
Heitkötter, J., Marschner, B., Soil zymography as a powerful tool for exploring hotspots and substrate limitation in undisturbed subsoil. Soil Biol. Biochem. 124 (2018), 210–217, 10.1016/j.soilbio.2018.06.021.
Hicks Pries, C., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S., Pett-Ridge, J., Torn, M., Asefaw Berhe, A., The deep soil organic carbon response to global change. Annu. Rev. Ecol. Evol. Syst., 54, 2023, null, 10.1146/annurev-ecolsys-102320-085332.
Hirsch, F., Raab, T., Ouimet, W., Dethier, D., Schneider, A., Raab, A., Soils on historic charcoal hearths: terminology and chemical properties. Soil Sci. Soc. Am. J. 81 (2017), 1427–1435, 10.2136/sssaj2017.02.0067.
Hobley, E., Vertical distribution of soil pyrogenic matter: a review. Pedosphere 29 (2019), 137–149, 10.1016/S1002-0160(19)60795-2.
Hockaday, W.C., Grannas, A.M., Kim, S., Hatcher, P.G., The transformation and mobility of charcoal in a fire-impacted watershed. Geochim. Cosmochim. Acta 71 (2007), 3432–3445, 10.1016/j.gca.2007.02.023.
IPCC, Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, P., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Jamieson, T., Sager, E., Guéguen, C., Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere 103 (2014), 197–204, 10.1016/j.chemosphere.2013.11.066.
Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ. 144 (2011), 175–187, 10.1016/j.agee.2011.08.015.
Jiang, S., Nguyen, T.A.H., Rudolph, V., Yang, H., Zhang, D., Ok, Y.S., Huang, L., Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environ. Geochem. Health 39 (2017), 403–415, 10.1007/s10653-016-9873-6.
Jobbágy, E.G., Jackson, R.B., The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10 (2000), 423–436, 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y., Luo, Y., Ok, Y.S., Palansooriya, K.N., Shepherd, J., Stephens, S., Weng, Z.(Han), Lehmann, J., How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13 (2021), 1731–1764, 10.1111/gcbb.12885.
Kaiser, K., Kalbitz, K., Cycling downwards – dissolved organic matter in soils. Soil Biol. Biochem. 52 (2012), 29–32, 10.1016/j.soilbio.2012.04.002.
Kerré, B., Bravo, C.T., Leifeld, J., Cornelissen, G., Smolders, E., Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification. Eur. J. Soil Sci. 67 (2016), 324–331, 10.1111/ejss.12338.
Kerré, B., Willaert, B., Smolders, E., Lower residue decomposition in historically charcoal-enriched soils is related to increased adsorption of organic matter. Soil Biol. Biochem. 104 (2017), 1–7, 10.1016/j.soilbio.2016.10.007.
Kleber, M., Sollins, P., Sutton, R., A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85 (2007), 9–24.
Knicker, H., Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Q. Int. 243 (2011), 251–263, 10.1016/j.quaint.2011.02.037.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., Leinweber, P., Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 171 (2008), 61–82, 10.1002/jpln.200700048.
Kuzyakov, Y., Bogomolova, I., Glaser, B., Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70 (2014), 229–236, 10.1016/j.soilbio.2013.12.021.
Lavallee, J.M., Soong, J.L., Cotrufo, M.F., Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26 (2020), 261–273, 10.1111/gcb.14859.
Lawaetz, A.J., Stedmon, C.A., Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63 (2009), 936–940.
Lehmann, J., A handful of carbon. Nature 447 (2007), 143–144, 10.1038/447143a.
Lehmann, J., Bio-energy in the black. Front. Ecol. Environ. 5 (2007), 381–387, 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
Leifeld, J., Thermal stability of black carbon characterised by oxidative differential scanning calorimetry. Org Geochem. 38 (2007), 112–127, 10.1016/j.orggeochem.2006.08.004.
Liu, C., Wang, H., Li, P., Xian, Q., Tang, X., Biochar's impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls. Sci. Total Environ. 650 (2019), 1988–1995, 10.1016/j.scitotenv.2018.09.356.
Lopez-Capel, E., Sohi, S.P., Gaunt, J.L., Manning, D.A.C., Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 69 (2005), 136–140, 10.2136/sssaj2005.0136a.
Lugato, E., Lavallee, J.M., Haddix, M.L., Panagos, P., Cotrufo, M.F., Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14 (2021), 295–300, 10.1038/s41561-021-00744-x.
Luo, Z., Wang, G., Wang, E., Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun., 10, 2019, 3688, 10.1038/s41467-019-11597-9.
Major, J., Lehmann, J., Rondon, M., Goodale, C., Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Chang. Biol. 16 (2010), 1366–1379, 10.1111/j.1365-2486.2009.02044.x.
Mastrolonardo, G., Calderaro, C., Cocozza, C., Hardy, B., Dufey, J., Cornelis, J.-T., Long-term effect of charcoal accumulation in hearth soils on tree growth and nutrient cycling. Front. Environ. Sci., 7, 2019.
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., Andersen, D.T., Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46 (2001), 38–48.
Meersmans, J., van Wesemael, B., De Ridder, F., Van Molle, M., Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 152 (2009), 43–52, 10.1016/j.geoderma.2009.05.015.
Murphy, K.R., Stedmon, C.A., Waite, T.D., Ruiz, G.M., Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108 (2008), 40–58, 10.1016/j.marchem.2007.10.003.
Murphy, K., Stedmon, C., Graeber, D., Bro, R., Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5 (2013), 6557–6566, 10.1039/C3AY41160E.
Murphy, K.R., Stedmon, C.A., Wenig, P., Bro, R., OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6 (2014), 658–661, 10.1039/C3AY41935E.
Nachimuthu, G., Watkins, M.D., Hulugalle, N., Finlay, L.A., Storage and initial processing of water samples for organic carbon analysis in runoff. MethodsX, 7, 2020, 101012, 10.1016/j.mex.2020.101012.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., Climate-smart soils. Nature 532 (2016), 49–57, 10.1038/nature17174.
Plante, A.F., Fernández, J.M., Leifeld, J., Application of thermal analysis techniques in soil science. Geoderma 153 (2009), 1–10, 10.1016/j.geoderma.2009.08.016.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L.M., Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., Nieder, R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biol. Biochem. 125 (2018), 10–26, 10.1016/j.soilbio.2018.06.025.
Poirier, V., Roumet, C., Munson, A.D., The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 120 (2018), 246–259, 10.1016/j.soilbio.2018.02.016.
Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., Graeber, D., staRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R. Water, 11, 2019, 2366, 10.3390/w11112366.
R Core Team, 2022. R: A Language and Environment for Statistical Computing.
Rasse, D.P., Rumpel, C., Dignac, M.-F., Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269 (2005), 341–356, 10.1007/s11104-004-0907-y.
Reisser, M., Purves, R.S., Schmidt, M.W.I., Abiven, S., Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci., 4, 2016, 80, 10.3389/feart.2016.00080.
Rocci, K.S., Lavallee, J.M., Stewart, C.E., Cotrufo, M.F., Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ., 793, 2021, 148569, 10.1016/j.scitotenv.2021.148569.
Roth, V.-N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall, T., Griffiths, R.I., Mellado-Vázquez, P.G., Mommer, L., Oram, N.J., Weigelt, A., Dittmar, T., Gleixner, G., Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12 (2019), 755–761, 10.1038/s41561-019-0417-4.
Rumpel, C., Kögel-Knabner, I., Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil 338 (2011), 143–158, 10.1007/s11104-010-0391-5.
Rumpel, C., Leifeld, J., Santin, C., Doerr, S.H., 2015. Movement of biochar in the environment. In: Biochar for Environmental Management, Routledge, pp. 283–299. https://doi.org/10.4324/9780203762264-11.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T.Z., Chenu, C., Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Chang. Biol. 16 (2010), 416–426, 10.1111/j.1365-2486.2009.01884.x.
Schiedung, M., Bellè, S.-L., Sigmund, G., Kalbitz, K., Abiven, S., Vertical mobility of pyrogenic organic matter in soils: a column experiment. Biogeosciences 17 (2020), 6457–6474, 10.5194/bg-17-6457-2020.
Schmidt, M.W.I., Noack, A.G., Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles 14 (2000), 777–793, 10.1029/1999GB001208.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., Persistence of soil organic matter as an ecosystem property. Nature 478 (2011), 49–56.
Six, J., Elliott, E.t., Paustian, K., Doran, J.W., Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62 (1998), 1367–1377, 10.2136/sssaj1998.03615995006200050032x.
Smebye, A., Alling, V., Vogt, R.D., Gadmar, T.C., Mulder, J., Cornelissen, G., Hale, S.E., Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 142 (2016), 100–105, 10.1016/j.chemosphere.2015.04.087.
Smith, P., Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 22 (2016), 1315–1324, 10.1111/gcb.13178.
Sokol, N.W., Sanderman, J., Bradford, M.A., Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol., 2018, 10.1111/gcb.14482.
Soucémarianadin, L., Reisser, M., Cécillon, L., Barré, P., Nicolas, M., Abiven, S., Pyrogenic carbon content and dynamics in top and subsoil of French forests. Soil Biol. Biochem. 133 (2019), 12–15, 10.1016/j.soilbio.2019.02.013.
Spokas, K.A., Novak, J.M., Masiello, C.A., Johnson, M.G., Colosky, E.C., Ippolito, J.A., Trigo, C., Physical disintegration of biochar: an overlooked process. Environ. Sci. Technol. Lett. 1 (2014), 326–332, 10.1021/ez500199t.
Stedmon, C.A., Bro, R., Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. Methods 6 (2008), 572–579, 10.4319/lom.2008.6.572b.
Tang, J., Li, X., Luo, Y., Li, G., Khan, S., Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity. Chemosphere 152 (2016), 399–406, 10.1016/j.chemosphere.2016.03.016.
Vidal, A., Watteau, F., Remusat, L., Mueller, C.W., Nguyen Tu, T.-T., Buegger, F., Derenne, S., Quenea, K., Earthworm cast formation and development: a shift from plant litter to mineral associated organic matter. Front. Environ. Sci., 7, 2019, 55, 10.3389/fenvs.2019.00055.
Virto, I., Moni, C., Swanston, C., Chenu, C., Turnover of intra- and extra-aggregate organic matter at the silt-size scale. Geoderma 156 (2010), 1–10, 10.1016/j.geoderma.2009.12.028.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39 (2007), 2183–2207, 10.1016/j.soilbio.2007.03.007.
Wagner, S., Jaffé, R., Stubbins, A., Dissolved black carbon in aquatic ecosystems. Limnol. Oceanogr. Lett. 3 (2018), 168–185, 10.1002/lol2.10076.
Walkley, A., Black, I.A., An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37, 1934, 29.
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K., Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Tech. 37 (2003), 4702–4708, 10.1021/es030360x.
Whalen, E.D., Grandy, A.S., Sokol, N.W., Keiluweit, M., Ernakovich, J., Smith, R.G., Frey, S.D., Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding. Glob. Chang. Biol. 28 (2022), 7167–7185, 10.1111/gcb.16413.
Wiedemeier, D.B., Abiven, S., Hockaday, W.C., Keiluweit, M., Kleber, M., Masiello, C.A., McBeath, A.V., Nico, P.S., Pyle, L.A., Schneider, M.P.W., Smernik, R.J., Wiesenberg, G.L.B., Schmidt, M.W.I., Aromaticity and degree of aromatic condensation of char. Org Geochem. 78 (2015), 135–143, 10.1016/j.orggeochem.2014.10.002.
Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., Xing, B., Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem., 169, 2022, 108657, 10.1016/j.soilbio.2022.108657.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.